scholarly journals FOXH1 promotes lung cancer progression by activating the Wnt/β-catenin signaling pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Zhang ◽  
Xian Zhang ◽  
Shasha Yang ◽  
Yanqiu Bao ◽  
Dongyuan Xu ◽  
...  

Abstract Background The expression of forkhead box protein H1 (FOXH1) is frequently upregulated in various cancers. However, the molecular mechanisms underlying the association between FOXH1 expression and lung cancer progression still remain poorly understood. Thus, the main objective of this study is to explore the role of FOXH1 in lung cancer. Methods The Cancer Genome Atlas dataset was used to investigate FOXH1 expression in lung cancer tissues, and the Kaplan–Meier plotter dataset was used to determine the role of FOXH1 in patient prognosis. A549 and PC9 cells were transfected with short hairpin RNA targeting FOXH1 mRNA. The Cell Counting Kit-8, colony formation, soft agar, wound healing, transwell invasion and flow cytometry assays were performed to evaluate proliferation, migration and invasion of lung cancer cells. Tumorigenicity was examined in a BALB/c nude mice model. Western blot analysis was performed to assess the molecular mechanisms, and β-catenin activity was measured by a luciferase reporter system assay. Results Higher expression level of FOXH1 was observed in tumor tissue than in normal tissue, and this was associated with poor overall survival. Knockdown of FOXH1 significantly inhibited lung cancer cell proliferation, migration, invasion, and cycle. In addition, the mouse xenograft model showed that knockdown of FOXH1 suppressed tumor growth in vivo. Further experiments revealed that FOXH1 depletion inhibited the epithelial-mesenchymal transition of lung cancer cells by downregulating the expression of mesenchymal markers (Snail, Slug, matrix metalloproteinase-2, N-cadherin, and Vimentin) and upregulating the expression of an epithelial marker (E-cadherin). Moreover, knockdown of FOXH1 significantly downregulated the activity of β-catenin and its downstream targets, p-GSK-3β and cyclin D1. Conclusion FOXH1 exerts oncogenic functions in lung cancer through regulation of the Wnt/β-catenin signaling pathway. FOXH1 might be a potential therapeutic target for patients with certain types of lung cancer.

2020 ◽  
Vol 15 (1) ◽  
pp. 683-695
Author(s):  
Feng Gu ◽  
Junhan Zhang ◽  
Lin Yan ◽  
Dong Li

AbstractLung cancer is a lethal malignancy. Plenty of circular RNAs (circRNAs) have been identified to be the vital regulators in lung cancer development. Here, we intended to clarify the functional role of circRNA HIPK3 (circHIPK3, also called hsa_circ_0021593) and its underlying mechanism of action. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to evaluate the levels of circHIPK3 and miR-381-3p. Cell viability and apoptosis rate were monitored by Cell Counting Kit-8 assay and flow cytometry, respectively. Cell migration was estimated through the Transwell assay. To assess glycolysis, commercial kits were utilized to measure the levels of glucose and lactate and the enzyme activity of hexokinase-2 (HK2). Expression of related proteins was detected via western blot analysis. The target connection between circHIPK3 and miR-381-3p was validated by dual-luciferase reporter, RIP, and pull-down assays. The role of circHIPK3 in vivo was determined via the xenograft assay. CircHIPK3 was upregulated, while miR-381-3p was downregulated in lung cancer tissues and cells. And circHIPK3 deficiency inhibited lung cancer progression by lowering cell proliferation, migration, glycolysis, and promoting apoptosis of lung cancer cells in vitro. MiR-381-3p was a target of circHIPK3, and miR-381-3p interference alleviated circHIPK3 knockdown-induced lung cancer progression inhibition. CircHIPK3 could activate the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway. Moreover, circHIPK3 knockdown suppressed tumor growth in vivo by inactivating the AKT/mTOR signaling pathway. In conclusion, the silencing of circHIPK3 inhibited lung cancer progression, at least in part, by sponging miR-381-3p and inactivating the AKT/mTOR signaling pathway.


2019 ◽  
Vol 9 (12) ◽  
pp. 1644-1652
Author(s):  
Xueqin Pan ◽  
Dongchun Ma

Lung cancer is one of the most common malignant cancers with a poor survival rate and high mortality worldwide. MiRNAs have been evaluated as crucial regulators of human gene expression, and exerted vital role involved in cancer progression. MiR-302a-3p was aberrant expressed in cancers that include pancreatic cancer and hepatocellular cancer, but its biological role in lung cancer remains elusive. This study aimed to discover the role and potential mechanism of miR-302a-3p in lung cancer. The lung cancer cell line with the highest expression of miR-302a-3p was selected, which was then subjected to transfection of miR-302a-3p mimic. Quantitative RT-PCR was performed to detect gene expression. Western blot assay was performed to determine corresponding genes that related to cell proliferation, apoptosis and invasion. Cell Counting Kit (CCK)-8 assay, flow cytometry analysis, wound healing and Transwell assay were performed to detect cell proliferation, apoptosis, migration and invasion, respectively. Luciferase reporter assay was carried out to identify the targeting relationship of miR-302-3p and HOXA-AS2. MiR-302a-3p was downregulated in lung cancer cells, and overexpression of miR-302a-3p significantly suppressed cell proliferation, migration, invasion and promoted cell apoptosis. HOXA-AS2 was a direct target of miR-302a-3p and was regulated by miR-302a-3p. HOXA-AS2 was upregulated in lung cancer cells. Upregulated HOXA-AS2 could reverse the effect that overexpression of miR-302a-3p caused on cell proliferation, apoptosis, migration and invasion. Overall, miR-302a-3p exhibited anti-oncogenic activity by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis in lung cancer by targeting HOXA-AS2, disclosing the role and regulatory mechanism of miR-302a-3p, which provided a promising therapeutic target for the clinical application of lung cancer treatment.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 30 ◽  
pp. 096368972110017
Author(s):  
Jianhao Huang ◽  
Yonghua Zheng ◽  
Xiao Zheng ◽  
Bao Qian ◽  
Qi Yin ◽  
...  

The type II protein arginine methyltransferase 5 (PRMT5) has been engaged in various human cancer development and progression types. Nevertheless, few studies uncover the biological functions of PRMT5 in the epithelial-mesenchymal transition (EMT) of human lung cancer cells, and the associated molecular mechanisms and signaling cascades are entirely unknown. Here, we show that PRMT5 is the ectopic expression in human lung cancer tissues and cell lines. Further study reveals that silencing PRMT5 by lentivirus-mediated shRNA or blocking of PRMT5 by specific inhibitor GSK591 attenuates the expression levels of EMT-related markers in vivo, using the xenograft mouse model. Moreover, our results show that down-regulation of PRMT5 impairs EGFR/Akt signaling cascades in human lung cancer cells, whereas re-expression of PRMT5 recovers those changes, suggesting that PRMT5 regulates EMT probably through EGFR/Akt signaling axis. Altogether, our results demonstrate that PRMT5 serves as a critical oncogenic regulator and promotes EMT in human lung cancer cells. More importantly, our findings also suggest that PRMT5 may be a potential therapeutic candidate for the treatment of human lung cancer.


2019 ◽  
Vol 10 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Bornita Das ◽  
Dona Sinha

DADS reflected the potential of reversal of FN-induced EMT by inhibition of Wnt signaling in A549 lung cancer cells.


2017 ◽  
Vol 43 (2) ◽  
pp. 757-767 ◽  
Author(s):  
Xiaoxue Bai ◽  
Lin Meng ◽  
Huijie Sun ◽  
Zhuo Li ◽  
Xiufang Zhang ◽  
...  

Background/Aims: Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Methods: Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. Results: MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. Conclusion: MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Jih-Tung Pai ◽  
Yi-Chin Lee ◽  
Si-Ying Chen ◽  
Yann-Lii Leu ◽  
Meng-Shih Weng

Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT) through the regulation of epidermal growth factor receptor (EGFR) signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (ERK) signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.


2020 ◽  
Vol 21 (15) ◽  
pp. 5425
Author(s):  
Ti-Hui Wu ◽  
Shan-Yueh Chang ◽  
Yu-Lueng Shih ◽  
Chih-Feng Chian ◽  
Hung Chang ◽  
...  

Epigenetic modification is considered a major mechanism of the inactivation of tumor suppressor genes that finally contributes to carcinogenesis. LIM homeobox transcription factor 1α (LMX1A) is one of the LIM-homeobox-containing genes that is a critical regulator of growth and differentiation. Recently, LMX1A was shown to be hypermethylated and functioned as a tumor suppressor in cervical cancer, ovarian cancer, and gastric cancer. However, its role in lung cancer has not yet been clarified. In this study, we used public databases, methylation-specific PCR (MSP), reverse transcription PCR (RT-PCR), and bisulfite genomic sequencing to show that LMX1A was downregulated or silenced due to promoter hypermethylation in lung cancers. Treatment of lung cancer cells with the demethylating agent 5-aza-2’-deoxycytidine restored LMX1A expression. In the lung cancer cell lines H23 and H1299, overexpression of LMX1A did not affect cell proliferation but suppressed colony formation and invasion. These suppressive effects were reversed after inhibition of LMX1A expression in an inducible expression system in H23 cells. The quantitative RT-PCR (qRT-PCR) data showed that LMX1A could modulate epithelial mesenchymal transition (EMT) through E-cadherin (CDH1) and fibronectin (FN1). NanoString gene expression analysis revealed that all aberrantly expressed genes were associated with processes related to cancer progression, including angiogenesis, extracellular matrix (ECM) remodeling, EMT, cancer metastasis, and hypoxia-related gene expression. Taken together, these data demonstrated that LMX1A is inactivated through promoter hypermethylation and functions as a tumor suppressor. Furthermore, LMX1A inhibits non-small cell lung cancer (NSCLC) cell invasion partly through modulation of EMT, angiogenesis, and ECM remodeling.


QJM ◽  
2019 ◽  
Vol 112 (8) ◽  
pp. 581-590 ◽  
Author(s):  
J You ◽  
M Li ◽  
L M Cao ◽  
Q H Gu ◽  
P B Deng ◽  
...  

Abstract Background Epithelial-mesenchymal transition (EMT) is an essential component of metastasis. Our previous study demonstrated that cancer-associated fibroblasts (CAFs) induce EMT in lung cancer cells. In recent years, many studies have demonstrated that CAFs induce metastasis and drug resistance in cancer cells via exosomes. Aim We sought to discover the mechanism underlying how CAFs induce EMT in lung cancer cells, unveiling the role of exosomes in lung cancer progression. Design We cultured lung cancer cell (i) with control medium, normal fibroblasts (NFs) or CAFs; (ii) with SNAI1-transfected or NC (negative control)-transfected CAFs; (iii) with exosomes extracted from NF- or CAF-conditioned medium; (iv) with exosomes released by SNAI1 or NC-transfected CAFs; (v) with CAF-conditioned medium or exosome-depleted CAF-conditioned medium. Methods qRT-PCR was conducted to examine the expression of CDH1 (gene of E-cadherin) and VIM (gene of Vimentin), western blotting was conducted to examine E-cadherin and vimentin levels in lung cancer cells. Results Exosomes released by CAFs-promoted EMT in lung cancer cells. Interestingly, SNAI1 levels in exosomes secreted from CAFs were correlated with SNAI1 expression in CAFs. Furthermore, the level of SNAI1 in exosomes was crucial for inducing EMT in lung cancer cells. Finally, treatment of CAFs with GW4869, an inhibitor of exosome release, noticeably inhibited their EMT-inducing effect on recipient epithelial cells. Conclusions The molecular mechanism underlying how CAFs induce EMT in cancer cells may be that CAFs deliver SNAI1 to recipient cancer cells via exosomes.


Sign in / Sign up

Export Citation Format

Share Document