scholarly journals Tissue-specific expression of p73 and p63 isoforms in human tissues

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Clayton B. Marshall ◽  
J. Scott Beeler ◽  
Brian D. Lehmann ◽  
Paula Gonzalez-Ericsson ◽  
Violeta Sanchez ◽  
...  

Abstractp73 and p63 are members of the p53 family that exhibit overlapping and distinct functions in development and homeostasis. The evaluation of p73 and p63 isoform expression across human tissue can provide greater insight to the functional interactions between family members. We determined the mRNA isoform expression patterns of TP73 and TP63 across a panel of 36 human tissues and protein expression within the highest-expressing tissues. TP73 and TP63 expression significantly correlated across tissues. In tissues with concurrent mRNA expression, nuclear co-expression of both proteins was observed in a majority of cells. Using GTEx data, we quantified p73 and p63 isoform expression in human tissue and identified that the α-isoforms of TP73 and TP63 were the predominant isoform expressed in nearly all tissues. Further, we identified a previously unreported p73 mRNA product encoded by exons 4 to 14. In sum, these data provide the most comprehensive tissue-specific atlas of p73 and p63 protein and mRNA expression patterns in human and murine samples, indicating coordinate expression of these transcription factors in the majority of tissues in which they are expressed.

2008 ◽  
Vol 86 (7) ◽  
pp. 465-471 ◽  
Author(s):  
Furong Wang ◽  
Ling Gao ◽  
Bendi Gong ◽  
Jianting Hu ◽  
Mei Li ◽  
...  

Cilostazol and ligands of peroxisome proliferator-activated receptors (PPARs) have been effectively used to alleviate diabetic complications, but the common and tissue-specific expression patterns of PPARs in different tissues in diabetic patients and those treated with cilostazol have not been reported. Here, we aimed to assess the effects of diabetes and cilostazol on mRNA expression of PPARα and PPARγ in the aorta, renal cortex, and retina of diabetic rats treated with cilostazol for 8 weeks. PPARα mRNA expression showed uniform downregulation in all these tissues in diabetic rats, and this effect was reversed by cilostazol treatment. Surprisingly, PPARγ mRNA expression was reduced in the renal cortex and retina, yet increased in the aorta of diabetic rats, although cilostazol still reversed these changes. Interestingly, cilostazol, a well-known phosphodiesterase 3 inhibitor and cAMP elevator, augmented cAMP content only in the aorta, but showed no significant effects in the renal cortex of diabetic rats. In conclusion, mRNA expression of PPARs is tissue-specific in diabetes and may be differently affected by cilostazol, possibly because of its tissue-specific effects on cAMP content.


2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

Animals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 200
Author(s):  
Zhangyuan Pan ◽  
Xiangyu Wang ◽  
Ran Di ◽  
Qiuyue Liu ◽  
Wenping Hu ◽  
...  

Growth differentiation factor 9 (GDF9) plays an important role in the early folliculogenesis of sheep. This study investigated the mRNA expression of ovine GDF9 in different tissues by real-time PCR. GDF9 exhibits significantly higher levels of expression (p < 0.01) in the ovary, relative to other tissues, indicating that its expression is tissue specific. To explore the regulatory mechanism of this tissue-specific expression, the methylation level of one CpG island (−1453 to −1854) of GDF9 promoter in ovary and heart was determined. In this region (−1987 to −1750), only the mC-4 site was present in the Sp4 binding site showed differential methylation between the heart and ovary; with increased (p < 0.01) methylation being observed in the heart. Additionally, the methylation level was negatively correlated with GDF9 mRNA expression (R = −0.75, p = 0.012), indicating that the methylation of this site plays an important role in transcriptional regulation of GDF9. The methylation effect of the mC-4 site was confirmed by using dual-luciferase. Site-directed mutation (methylation) of mC-4 site significantly reduced (p < 0.05) basal transcriptional activity of GDF9 promoter in oocytes. These results imply that methylation of GDF9 promoter CpG island mC-4 site may affect the binding of the Sp4 transcription factor to the GDF9 promoter region in sheep, thereby regulating GDF9 expression and resulting in a tissue-specific expression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.


Author(s):  
Zsolt Albert ◽  
Cs. Deák ◽  
A. Miskó ◽  
M. Tóth ◽  
I. Papp

Wax production is an important aspect of apple (Malus domestica Borkh.) fruit development from both theoretical and practical point of views. The complex molecular mechanism that controls wax biosynthesis is still widely unknown but many studies focused on this topic. We aimed to develop further the experimental framework of these efforts with a description of an improved reference genes expression system. Results in the literature show that similarities exist among the expression of some housekeeping genes of different plant species. Based on these considerations and on gene expression data from Arabidopsis thaliana, some genes in apple were assigned for analysis. EST sequences of apple were used to design specific primers for RT-PCR experiments. Isolation of intact RNA from different apple tissues and performing RT-PCR reaction were also key point in obtaining expression patterns. To monitor DNA contamination of the RNA samples, specific primers were used that amplify intron-containing sequences from the cDNA. We found that actin primers can be used for the detection of intron containing genomic DNA, and tubulin primers are good internal controls in RT-PCR experiments. We were able to make a difference between tissue-specific and tissue-independent gene-expression, furthermore we found tissue specific differences between the expression patterns of candidate genes, that are potentially involved in wax-biosynthesis. Our results show that KCS1 and KCS4 are overexpressed in the skin tissue, this could mean that these genes have skin-specific expression in apple fruit.


2003 ◽  
Vol 193 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Yvonne Förster ◽  
Axel Meye ◽  
Sybille Albrecht ◽  
Matthias Kotzsch ◽  
Susanne Füssel ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Johanna Kurko ◽  
Paul V. Debes ◽  
Andrew H. House ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

Despite recent taxonomic diversification in studies linking genotype with phenotype, follow-up studies aimed at understanding the molecular processes of such genotype-phenotype associations remain rare. The age at which an individual reaches sexual maturity is an important fitness trait in many wild species. However, the molecular mechanisms regulating maturation timing processes remain obscure. A recent genome-wide association study in Atlantic salmon (Salmo salar) identified large-effect age-at-maturity-associated chromosomal regions including genes vgll3, akap11 and six6, which have roles in adipogenesis, spermatogenesis and the hypothalamic-pituitary-gonadal (HPG) axis, respectively. Here, we determine expression patterns of these genes during salmon development and their potential molecular partners and pathways. Using Nanostring transcription profiling technology, we show development- and tissue-specific mRNA expression patterns for vgll3, akap11 and six6. Correlated expression levels of vgll3 and akap11, which have adjacent chromosomal location, suggests they may have shared regulation. Further, vgll3 correlating with arhgap6 and yap1, and akap11 with lats1 and yap1 suggests that Vgll3 and Akap11 take part in actin cytoskeleton regulation. Tissue-specific expression results indicate that vgll3 and akap11 paralogs have sex-dependent expression patterns in gonads. Moreover, six6 correlating with slc38a6 and rtn1, and Hippo signaling genes suggests that Six6 could have a broader role in the HPG neuroendrocrine and cell fate commitment regulation, respectively. We conclude that Vgll3, Akap11 and Six6 may influence Atlantic salmon maturation timing via affecting adipogenesis and gametogenesis by regulating cell fate commitment and the HPG axis. These results may help to unravel general molecular mechanisms behind maturation.


2013 ◽  
Vol 13 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Linn Fagerberg ◽  
Björn M. Hallström ◽  
Per Oksvold ◽  
Caroline Kampf ◽  
Dijana Djureinovic ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3979-3979
Author(s):  
Sergei Merkoulov ◽  
Anton A. Komar ◽  
Keith R. McCrae

Abstract High molecular weight kininogen (HK) plays an important role in the assembly and activation of the kallikrein/kinin system. While the human genome contains only a single copy of the kininogen gene, three copies are present in the rat (one K-kininogen and two T-kininogen). Here, we report that the mouse genome contains two homologous kininogen genes (overall homology 91%), denoted mHK1 and mHK2. Both genes are located on chromosome 16 in a head-to-head orientation, and contain open reading frames. The size of intronic sequences between the 11 kininogen gene exons is similar (Figure). HK mRNA transcripts derived from the mHK1 and mHK2 genes differ slightly in size due to gaps of 33 and 18 nucleotides in exon 10 of mHK2. RT-PCR analysis of HK gene expression in adult and embryonic murine tissues revealed that HK mRNA was derived from mHK1 in liver, adrenal and embryo, but from mHK2 in kidney and lung. HK mRNA derived from both genes was present in testis, brain and muscle, though expression levels were low relative to those in other tissues. HK mRNA was not detected in ovary, bone marrow, heart or bladder. mHK1-derived HK mRNA was alternatively spliced, as demonstrated by the presence of an HK mRNA transcript encoding a novel HK1 isoform, ΔmD5, that lacked the portion of exon 10 encoding Thr400 - Asp582 of HK domains 5 and 6. Examination of the putative promoter regions of the two genes using the MatInspector Professional program (Genomatix) demonstrated distinct differences, perhaps explaining in part their tissue-specific expression patterns. Like domain 5 of human HK (hD5), domain 5 of murine HK (mD5), in which the histidine and lysine-rich C-terminal region of this domain previously shown to mediate the antiangiogenic activity of domain 5 is highly conserved, inhibited endothelial cell proliferation. While the function of each of the kininogen genes in the intact animal has yet to be defined, characterization of the two genes may provide new information concerning the role of high molecular weight kininogen in development, normal physiology, and pathological processes. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document