scholarly journals CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Ming Wang ◽  
Jiaoying Jia ◽  
Yan Cui ◽  
Yong Peng ◽  
Yugang Jiang

AbstractExtracellular vesicles are involved in the occurrence, progression and metastasis of glioblastoma (GBM). GBM can secrete a variety of tumour-derived extracellular vesicles (TDEVs) with high immunosuppressive activity that remotely suppress the systemic immune system, and therapy targeting TDEVs has potential efficacy. In this study, we detected a higher concentration of CD73+ TDEVs enriched in exosomes in central and peripheral body fluids of GBM patients than in those of patients with other brain tumours (low-grade glioma or brain metastases from melanoma or non-small-cell lung cancer). High CD73 expression was detected on the surface of T cells, and this CD73 was derived from TDEVs secreted by GBM cells. In vitro, we observed that CD73+ TDEVs released by GBM cell lines could be taken up by T cells. Moreover, excess adenosine was produced by AMP degradation around T cells and by adenosine receptor 2A (A2AR)-dependent inhibition of aerobic glycolysis and energy-related metabolic substrate production, thereby inhibiting the cell cycle entry and clonal proliferation of T cells. In vivo, defects in exosomal synthesis and CD73 expression significantly inhibited tumour growth in GBM tumour-bearing mice and restored the clonal proliferation of T cells in the central and peripheral regions. These data indicate that CD73+ TDEVs can be used as a potential target for GBM immunotherapy.

Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Martin Wilhelm ◽  
Volker Kunzmann ◽  
Susanne Eckstein ◽  
Peter Reimer ◽  
Florian Weissinger ◽  
...  

Abstract There is increasing evidence that γδ T cells have potent innate antitumor activity. We described previously that synthetic aminobisphosphonates are potent γδ T cell stimulatory compounds that induce cytokine secretion (ie, interferon γ [IFN-γ]) and cell-mediated cytotoxicity against lymphoma and myeloma cell lines in vitro. To evaluate the antitumor activity of γδ T cells in vivo, we initiated a pilot study of low-dose interleukin 2 (IL-2) in combination with pamidronate in 19 patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). The objectives of this trial were to determine toxicity, the most effective dose for in vivo activation/proliferation of γδ T cells, and antilymphoma efficacy of the combination of pamidronate and IL-2. The first 10 patients (cohort A) who entered the study received 90 mg pamidronate intravenously on day 1 followed by increasing dose levels of continuous 24-hour intravenous (IV) infusions of IL-2 (0.25 to 3 × 106 IU/m2) from day 3 to day 8. Even at the highest IL-2 dose level in vivo, γδ T-cell activation/proliferation and response to treatment were disappointing with only 1 patient achieving stable disease. Therefore, the next 9 patients were selected by positive in vitro proliferation of γδ T cells in response to pamidronate/IL-2 and received a modified treatment schedule (6-hour bolus IV IL-2 infusions from day 1-6). In this patient group (cohort B), significant in vivo activation/proliferation of γδ T cells was observed in 5 patients (55%), and objective responses (PR) were achieved in 3 patients (33%). Only patients with significant in vivo proliferation of γδ T cells responded to treatment, indicating that γδ T cells might contribute to this antilymphoma effect. Overall, administration of pamidronate and low-dose IL-2 was well tolerated. In conclusion, this clinical trial demonstrates, for the first time, that γδ T-cell–mediated immunotherapy is feasible and can induce objective tumor responses. (Blood. 2003;102:200-206)


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3436-3436
Author(s):  
Renier J. Brentjens ◽  
Daniel Hollyman ◽  
Jae Park ◽  
Elmer Santos ◽  
Raymond Yeh ◽  
...  

Abstract Abstract 3436 Poster Board III-324 Patient T cells may be genetically modified to express chimeric antigen receptors (CARs) targeted to antigens expressed on tumor cells. We have initiated a clinical trial treating chemotherapy-refractory chronic lymphocytic leukemia (CLL) patients with autologous T cells modified to express the 19-28z CAR targeted to the CD19 antigen expressed on most B cell malignancies. In the first cohort of this trial, patients were infused with the lowest planned dose of modified T cells alone. All patients treated in this cohort experienced low-grade fevers following modified T cell infusion, and 2 of 3 treated patients exhibited subjective and laboratory evidence of transient reductions in tumor burden. The first patient treated on the second cohort of this study received prior cyclophophamide chemotherapy followed by the same dose of modified T cells administered to the first cohort of patients. This patient experienced persistent fevers, dyspnea, hypotension, renal failure, and died 44 hours following modified T cell infusion, likely secondary to sepsis. Modified T cells were not detectable in the peripheral blood of treated patients at 1 hour following completion of T cell infusion. However, post mortem analyses revealed a rapid infiltration of targeted T cells into anatomical sites of tumor involvement. Serum levels of the inflammatory cytokines IL-5, IL-8, and GM-CSF, but not TNFα, markedly and rapidly increased following infusion of genetically targeted T cells in this patient, mirroring the in vitro cytokine secretion profile of this patient's T cells, and consistent with marked in vivo activation of the modified T cells. Similar cytokine signatures were not found in patients from the first cohort. Significantly, serum cytokine analyses from the second cohort patient revealed a marked increase in the pro-proliferative cytokines IL-2, IL-7, IL-12, and IL-15 following cyclophosphamide therapy, in contrast to the baseline levels found in the first cohort. This report demonstrates the high efficiency trafficking of CD19-targeted T cells and in vivo activation of T cells encoding a second generation CD28/zeta chain-based chimeric antigen receptor. Furthermore, these data highlight mechanisms whereby cyclophosphamide may generate an in vivo milieu that enhances the anti-tumor efficacy of autologous tumor targeted T cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Jae-Ho Cho ◽  
Hee-Ok Kim ◽  
Kylie Webster ◽  
Mainthan Palendira ◽  
Bumsuk Hahm ◽  
...  

Abstract Immune responses lead to expression of immunoregulatory molecules on T cells, including natural killer (NK) receptors, such as CD94/NKG2A on CD8+ T cells; these receptors restrain CD8+ responses, thereby preventing T-cell exhaustion in chronic infections and limiting immunopathology. Here, we examined the requirements for inducing CD94/NKG2A on T cells responding to antigen. In vitro, moderate induction of CD94/NKG2A expression occurred after exposure of naive CD8+ (but not CD4+) cells to CD3 ligation or specific peptide. Surprisingly, expression was inhibited by CD28/B7 costimulation. Such inhibition applied only to CD94/NKG2A and not other NK receptors (NKG2D) and was mediated by IL-2. Inhibition by IL-2 occurred via a NFAT cell-independent component of the calcineurin pathway, and CD94/NKG2A induction was markedly enhanced in the presence of calcineurin blockers, such as FK506 or using calcineurin-deficient T cells, both in vitro and in vivo. In addition to CD28-dependent inhibition by IL-2, CD94/NKG2A expression was impaired by several other cytokines (IL-4, IL-23, and transforming growth factor-β) but enhanced by others (IL-6, IL-10, and IL-21). The complex interplay between these various stimuli may account for the variable expression of CD94/NKG2A during responses to different pathogens in vivo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lorna B. Jarvis ◽  
Daniel B. Rainbow ◽  
Valerie Coppard ◽  
Sarah K. Howlett ◽  
Zoya Georgieva ◽  
...  

AbstractThe adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ryutaro Oba ◽  
Motomichi Isomura ◽  
Akira Igarashi ◽  
Kinya Nagata

Extracellular vesicles (EVs) are known to contain unique proteins that reflect the cells of origins. Activated T cells are reported to secrete various EVs. To establish T cell subset-specific biomarkers, we performed proteomic analysis with Th1- and Th2-derived EVs and identified HLA-DR as a Th1-dominated EV membrane protein. We designed a measurement system for CD3+CD4+, CD3+CD8+, and CD3+HLA-DR+EVs to specifically determine EV subpopulations derived from CD4+, CD8+, and Th1-type T cells, respectively.In vitroanalysis showed that CD3+CD4+EVs and CD3+CD8+EVs were selectively secreted from activated CD4+and CD8+T cells, respectively, and that CD3+HLA-DR+EVs were actively secreted from not only Th1 but also activated CD8+T (probably mostly Tc1) cells. To evaluate the clinical usefulness of these EVs, we measured the serum levels in patients with inflammatory diseases, including Epstein-Barr virus (EBV,n=13) infection, atopic dermatitis (AD,n=10), rheumatoid arthritis (RA,n=20), and osteoarthritis (OA,n=20) and compared the levels with those of healthy adults (n=20). CD3+CD4+EVs were significantly higher in all of EBV infection, AD, RA, and OA while CD3+CD8+EVs were higher in EBV infection, lower in RA, and not different in AD and OA relative to the control. The levels of CD3+HLA-DR+EVs were markedly higher in EBV infection and significantly lower in AD. The results suggest that these EV subpopulations reflectin vivoactivation status of total CD4+, total CD8+, and Th1/Tc1-type T cells, respectively, and may be helpful in T cell-related clinical settings, such as cancer immunotherapy and treatment of chronic infection, autoimmune diseases, and graft-versus-host disease.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3890-3897 ◽  
Author(s):  
Juan Vera ◽  
Barbara Savoldo ◽  
Stephane Vigouroux ◽  
Ettore Biagi ◽  
Martin Pule ◽  
...  

AbstractThere has been interest in generating T cells expressing chimeric artificial receptors (CARs) targeting CD19/CD20 antigens to treat B-cell lymphomas. If successful, however, this approach would likely impair humoral immunity because T cells may persist long-term. Most low-grade lymphoma and chronic lymphocytic leukemia (B-CLL) cells express monoclonal immunoglobulins carrying either κ or λ light chains. We, therefore, explored whether T lymphocytes could be genetically modified to target the tumor-associated light chain, sparing B lymphocytes expressing the reciprocal light chain, and consequently reduce impairment of humoral immunity. We found that T lymphocytes expressing the anti-κ light chain CAR showed cytotoxic activity against Igκ+ tumor cell lines and B-CLL cells both in vitro and in vivo. We also found that the incorporation of the CD28 endodomain within the CAR enhanced the in vitro and in vivo expansion of transgenic T cells after tumor-associated antigen stimulation. Free Igκ+ did not compromise the ability of redirected T lymphocytes to eliminate Igκ+ tumors because these free immunoglobulins served to sustain proliferation of CAR-CD28 transgenic T cells. Thus, adoptive transfer of T lymphocytes targeting the appropriate light chain could be a useful immunotherapy approach to treat B-lymphocyte malignancies that clonally express immunoglobulin without entirely compromising humoral immunity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Liu ◽  
Shuo Yang ◽  
Bihui Cao ◽  
Guangyu Zhou ◽  
Fengjuan Zhang ◽  
...  

Abstract Background B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. Methods We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. Results B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. Conclusions Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.


2020 ◽  
Author(s):  
Lorna Jarvis ◽  
Daniel Rainbow ◽  
Valerie Coppard ◽  
Sarah Howlett ◽  
Jessica Davies ◽  
...  

Abstract The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression


Sign in / Sign up

Export Citation Format

Share Document