scholarly journals PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Amrita Salvi ◽  
Alexandria N. Young ◽  
Andrew C. Huntsman ◽  
Melissa R. Pergande ◽  
Melissa A. Korkmaz ◽  
...  

AbstractPHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1711
Author(s):  
Michelle Bilbao ◽  
Chelsea Katz ◽  
Stephanie L. Kass ◽  
Devon Smith ◽  
Krystal Hunter ◽  
...  

Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and prematurely shortens patients’ lives. Recurrent ovarian cancer is characterized by high tumor heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer in 3D culture.


2018 ◽  
Vol 433 ◽  
pp. 221-231 ◽  
Author(s):  
Subbulakshmi Karthikeyan ◽  
Angela Russo ◽  
Matthew Dean ◽  
Daniel D. Lantvit ◽  
Michael Endsley ◽  
...  

2021 ◽  
Author(s):  
Cassie Liu ◽  
Catalina Muñoz-Trujillo ◽  
John A. Katzenellenbogen ◽  
Benita S. Katzenellenbogen ◽  
Adam R. Karpf

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13563-e13563
Author(s):  
Dennis C. DeSimone ◽  
Trung T. Nguyen ◽  
Eugen Brailiou ◽  
John C. Taylor ◽  
Gabriela Cristina Brailoiu ◽  
...  

e13563 Background: Most ovarian cancer patients are treated with platinum-based chemotherapy but eventually relapse with incurable disease. The G protein-coupled estrogen receptor GPER (GPR30) mediates Ca2+ mobilization in response to estrogen and G-1, a synthetic agonist. Large and sustained Ca2+ responses can lead to mitochondrial Ca2+ overload and apoptosis. Hence, we evaluated whether G-1 could induce apoptosis in cisplatin-sensitive A2780 and isogenic cisplatin–resistant CP70 (14-fold resistant), C30 (70-fold resistant) and C200 (157-fold resistant) human ovarian cancer cells. Bcl-2 and Bcl-xL protect mitochondria from Ca2+overload, and were overexpressed in these cisplatin-resistant cells; thus we also examined combining the Bcl-2 family inhibitor navitoclax with G-1. Methods: Cytoplasmic [Ca2+]c and mitochondrial [Ca2+]m were monitored using microscopy and fluorescent Ca2+ probes. Cell cycle, apoptosis and mitochondrial membrane potential (MMP) were assessed by flow cytometry of propidium iodide, Annexin V and DiIC1(5) -stained cells. The intracellular Ca2+ chelator BAPTA was used to block Ca2+mobilization. Results: Expression of the 53kDa GPER but not the 38 kDa isoform progressively increased with increasing cisplatin resistance. G-1 elicited sustained [Ca2+]c rises that correlated with 53 kDa GPER expression, followed by rises in [Ca2+]m. In all cells, 2.5 μM G-1 blocked cell cycle progression at G2/M, inhibited proliferation, and induced apoptosis (A2780 > C30 > CP70 ≥ C200). G-1 induced p53, caspase-3 and PARP cleavage, and MMP loss. BAPTA prevented G-1’s cell cycle and apoptotic effects in cells showing large Ca2+ mobilization responses but did not in cells with small Ca2+responses. Combining navitoclax with G-1 superadditively decreased cell viability and increased apoptosis. Conclusions: G-1 blocked cell cycle progression and induced apoptosis via a Ca2+-dependent pathway in cells expressing high 53 kDa GPER levels, but via a Ca2+-independent pathway in cells with low 53 kDa GPER expression. G-1 also interacted cooperatively with naviticlax. Therefore, G-1 plus navitoclax shows potential for therapeutic use in platinum-sensitive and -resistant ovarian cancer.


2020 ◽  
Author(s):  
Yinuo Li ◽  
Shourong Wang ◽  
Peng Li ◽  
Yingwei Li ◽  
Yao Liu ◽  
...  

Abstract BackgroundRad50 is a component of MRN complex, which consists of Mre11-Rad50-Nbs1. The MRN complex participates in DNA double-strand break repair and DNA-damage checkpoint activation. We sought to investigate the clinical and functional significance of Rad50 in high-grade serous ovarian cancer. MethodsChromatin immunoprecipitation and luciferase assays were performed to evaluate the regulatory roles of MYC on Rad50 expression. Association between Rad50 expression and clinical outcome in HGSOCs was evaluated by Kaplan-Meier analysis. Invasion, clonogenic assay and xenograft mice model were conducted to determine to functional role of Rad50 in ovarian cancer. Protein immunoprecipitation and immunofluorescence were used to explore the underlying mechanisms. ResultsMYC proto-oncogene transcriptionally activated Rad50 expression in high-grade serous ovarian cancer. Next, we provided evidences that Rad50 was frequently upregulated in HGSOCs and enhanced Rad50 expression inversely correlated with patient’s survival. In addition, ectopic expression of Rad50 promoted proliferation/invasion and induced EMT of ovarian cancer cells, whereas knockdown of Rad50 led to decreased aggressive behaviors. Mechanistic investigations revealed that Rad50 induced aggressiveness in HGSOC via activation NF-κB signaling pathway. Moreover, we identified CARD9 as an interacting protein of Rad50 in ovarian cancer cells and activation of NF-κB pathway by Rad50 is CARD9 dependent. ConclusionsOur findings provide evidence that MYC targeted Rad50 exhibits oncogenic property via NF-κB activation in high-grade serous ovarian cancer.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 662 ◽  
Author(s):  
Martyna Pakuła ◽  
Paweł Uruski ◽  
Arkadiusz Niklas ◽  
Aldona Woźniak ◽  
Dariusz Szpurek ◽  
...  

The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.


Sign in / Sign up

Export Citation Format

Share Document