scholarly journals Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
M. Di Guardo ◽  
B. Farneti ◽  
I. Khomenko ◽  
G. Modica ◽  
A. Mosca ◽  
...  

AbstractAlmond is appreciated for its nutraceutical value and for the aromatic profile of the kernels. In this work, an almond collection composed of 96 Sicilian accessions complemented with 10 widely cultivated cultivars was phenotyped for the production of volatile organic compounds using a proton-transfer time-of-flight mass spectrometer and genotyped using the Illumina Infinium®18 K Peach SNP array. The profiling of the aroma was carried out on fresh and roasted kernels enabling the detection of 150 mass peaks. Sixty eight, for the most related with sulfur compounds, furan containing compounds, and aldehydes formed by Strecker degradation, significantly increased during roasting, while the concentration of fifty-four mass peaks, for the most belonging to alcohols and terpenes, significantly decreased. Four hundred and seventy-one robust SNPs were selected and employed for population genetic studies. Structure analysis detected three subpopulations with the Sicilian accessions characterized by a different genetic stratification compared to those collected in Apulia (South Italy) and the International cultivars. The linkage-disequilibrium (LD) decay across the genome was equal to r2 = 0.083. Furthermore, a high level of collinearity (r2 = 0.96) between almond and peach was registered confirming the high synteny between the two genomes. A preliminary application of a genome-wide association analysis allowed the detection of significant marker-trait associations for 31 fresh and 33 roasted almond mass peaks respectively. An accurate genetic and phenotypic characterization of novel germplasm can represent a valuable tool for the set-up of marker-assisted selection of novel cultivars with an enhanced aromatic profile.

Author(s):  
Marc Petitpierre ◽  
Ludwig Stenz ◽  
Ariane Paoloni-Giacobino

Introduction: The effects of acupuncture treatment in patients suffering from burnout may imply an epigenetic control mediated by DNA methylation changes. In this observational study, a genome-wide characterization of epigenetic changes in blood DNA, before and after acupuncture treatment, was performed in a cohort of 11 patients suffering from burnout. Methods: Burnout was assessed using the Maslach Burnout Inventory (MBI) and DNA was extracted from blood samples and analyzed by Illumina EPIC BeadChip. Results: Before acupuncture, all patients suffered of emotional exhaustion (EE) (MBI-EE score, 44±6), 81% suffered of depersonalization (DP) (MBI-DP score, 16±6), and 72% of low feelings of personal accomplishment (PA) (MBI-PA score, 29±9). After acupuncture, all MBI dimensions improved significantly (EE, 16±11 [p=1.5*10-4]; DP, 4±5 [p=5.3*10-4]; and PA, 40±6 [p=4.1*10-3]). For each patient, both methylomes obtained before and after acupuncture co-clustered in the multidimensional scaling plot, indicating a high level of similarity. Genes corresponding to the 10 most differentially methylated CpGs showed enrichment in the brain dopaminergic signalling, steroid synthesis and in the insulin sensitivity pathways. Conclusion: Acupuncture treatment was found to be highly effective on all burnout dimensions and the epigenetic targets identified were involved in some major disturbances of this syndrome.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anthony Bernard ◽  
Julie Crabier ◽  
Armel S. L. Donkpegan ◽  
Annarita Marrano ◽  
Fabrice Lheureux ◽  
...  

Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers’ needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTMJ. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e48305 ◽  
Author(s):  
Cameron Peace ◽  
Nahla Bassil ◽  
Dorrie Main ◽  
Stephen Ficklin ◽  
Umesh R. Rosyara ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Dennis Katuuramu ◽  
Sandra Branham ◽  
Amnon Levi ◽  
Patrick Wechter

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas Citrullus amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 - 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding disease resistance proteins, leucine-rich repeat receptor-like protein kinase, and WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


2021 ◽  
Vol 7 (24) ◽  
pp. eabg3097
Author(s):  
Bo Zhao ◽  
Yanpeng Xi ◽  
Junghyun Kim ◽  
Sibum Sung

Chromatin structure is critical for gene expression and many other cellular processes. In Arabidopsis thaliana, the floral repressor FLC adopts a self-loop chromatin structure via bridging of its flanking regions. This local gene loop is necessary for active FLC expression. However, the molecular mechanism underlying the formation of this class of gene loops is unknown. Here, we report the characterization of a group of linker histone-like proteins, named the GH1-HMGA family in Arabidopsis, which act as chromatin architecture modulators. We demonstrate that these family members redundantly promote the floral transition through the repression of FLC. A genome-wide study revealed that this family preferentially binds to the 5′ and 3′ ends of gene bodies. The loss of this binding increases FLC expression by stabilizing the FLC 5′ to 3′ gene looping. Our study provides mechanistic insights into how a family of evolutionarily conserved proteins regulates the formation of local gene loops.


2018 ◽  
Vol 50 (7) ◽  
pp. 523-531 ◽  
Author(s):  
Bingxing An ◽  
Jiangwei Xia ◽  
Tianpeng Chang ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Cattle internal organs as accessible raw materials have a long history of being widely used in beef processing, feed and pharmaceutical industry. These traits not only are of economic interest to breeders, but they are intrinsically linked to many valuable traits, such as growth, health, and productivity. Using the Illumina Bovine HD 770K SNP array, we performed a genome-wide association study for heart weight, liver weight, spleen weight, lung weight, and kidney weight in 1,217 Simmental cattle. In our research, 38 significant single nucleotide polymorphisms (SNPs) ( P < 1.49 × 10−6) were identified for five internal organ weight traits. These SNPs are within or near 13 genes, and some of them have been reported previously, including NDUFAF4, LCORL, BT.94996, SLIT2, FAM184B, LAP3, BBS12, MECOM, CD300LF, HSD17B3, TLR4, MXI1, and MB21D2. In addition, we detected four haplotype blocks on BTA6 containing 18 significant SNPs associated with spleen weight. Our results offer worthy insights into understanding the genetic mechanisms of internal organs' development, with potential application in breeding programs of Simmental beef cattle.


Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weizhuo Zhu ◽  
Yiyi Guo ◽  
Yeke Chen ◽  
Dezhi Wu ◽  
Lixi Jiang

Abstract Background Transcription factors GATAs are involved in plant developmental processes and respond to environmental stresses through binding DNA regulatory regions to regulate their downstream genes. However, little information on the GATA genes in Brassica napus is available. The release of the reference genome of B. napus provides a good opportunity to perform a genome-wide characterization of GATA family genes in rapeseed. Results In this study, 96 GATA genes randomly distributing on 19 chromosomes were identified in B. napus, which were classified into four subfamilies based on phylogenetic analysis and their domain structures. The amino acids of BnGATAs were obvious divergence among four subfamilies in terms of their GATA domains, structures and motif compositions. Gene duplication and synteny between the genomes of B. napus and A. thaliana were also analyzed to provide insights into evolutionary characteristics. Moreover, BnGATAs showed different expression patterns in various tissues and under diverse abiotic stresses. Single nucleotide polymorphisms (SNPs) distributions of BnGATAs in a core collection germplasm are probably associated with functional disparity under environmental stress condition in different genotypes of B. napus. Conclusion The present study was investigated genomic structures, evolution features, expression patterns and SNP distributions of 96 BnGATAs. The results enrich our understanding of the GATA genes in rapeseed.


Sign in / Sign up

Export Citation Format

Share Document