scholarly journals BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Weiyue Chen ◽  
Minghui Lv ◽  
Yanze Wang ◽  
Ping-An Wang ◽  
Yanwei Cui ◽  
...  

Abstract BES1 and BZR1 were originally identified as two key transcription factors specifically regulating brassinosteroid (BR)-mediated gene expression. They belong to a family consisting of six members, BES1, BZR1, BEH1, BEH2, BEH3, and BEH4. bes1 and bzr1 single mutants do not exhibit any characteristic BR phenotypes, suggesting functional redundancy of these proteins. Here, by generating higher order mutants, we show that a quintuple mutant is male sterile due to defects in tapetum and microsporocyte development in anthers. Our genetic and biochemical analyses demonstrate that BES1 family members also act as downstream transcription factors in the EMS1-TPD1-SERK1/2 pathway. Ectopic expression of both TPD1 and EMS1 in bri1-116, a BR receptor null mutant, leads to the accumulation of non-phosphorylated, active BES1, similar to activation of BES1 by BRI1-BR-BAK1 signaling. These data suggest that two distinctive receptor-like kinase-mediated signaling pathways share BES1 family members as downstream transcription factors to regulate different aspects of plant development.

Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 909-918 ◽  
Author(s):  
J.D. Faure ◽  
P. Vittorioso ◽  
V. Santoni ◽  
V. Fraisier ◽  
E. Prinsen ◽  
...  

The control of cell division by growth regulators is critical to proper plant development. The isolation of single-gene mutants altered in the response to plant hormones should permit the identification of essential genes controlling the growth and development of plants. We have isolated mutants pasticcino belonging to 3 complementation groups (pas1, pas2, pas3) in the progeny of independent ethyl methane sulfonate and T-DNA mutagenized Arabidopsis thaliana plants. The screen was performed in the presence or absence of cytokinin. The mutants isolated were those that showed a significant hypertrophy of their apical parts when grown on cytokinin-containing medium. The pas mutants have altered embryo, leaf and root development. They display uncoordinated cell divisions which are enhanced by cytokinin. Physiological and biochemical analyses show that cytokinins are probably involved in pas phenotypes. The PAS genes have been mapped respectively to chromosomes 3, 5 and 1 and represent new plant genes involved in the control of cell division and plant development.


2020 ◽  
Author(s):  
Philip Anthony Wigge ◽  
David Guillaume-Schoepfer ◽  
Katja E Jaeger ◽  
Feng Geng ◽  
Fabrizio G Doccula ◽  
...  

Cold temperatures are a threat to temperate plants, and Arabidopsis thaliana has acquired an adaptive gene expression network controlled by CBF transcription factors. The CBFs are sufficient to enable plants to survive otherwise lethal subzero temperatures. Constitutive CBF expression causes delayed flowering and stunted growth, and plants have evolved the ability to restrict CBF expression to occur only in the cold. This allows plants to anticipate likely freezing events and selectively deploy cold tolerance. The mechanism by which cold stress is sensed is however unknown. Here we show that protein translation rates in plants are proportional to temperature, and reduced translation rates trigger a rise in intracellular free calcium that activates the CAMTA transcription factors, and these directly activate cold-induced gene expression.


2017 ◽  
Vol 35 (4) ◽  
pp. 837-854 ◽  
Author(s):  
Cristina M Alexandre ◽  
James R Urton ◽  
Ken Jean-Baptiste ◽  
John Huddleston ◽  
Michael W Dorrity ◽  
...  

AbstractVariation in regulatory DNA is thought to drive phenotypic variation, evolution, and disease. Prior studies of regulatory DNA and transcription factors across animal species highlighted a fundamental conundrum: Transcription factor binding domains and cognate binding sites are conserved, while regulatory DNA sequences are not. It remains unclear how conserved transcription factors and dynamic regulatory sites produce conserved expression patterns across species. Here, we explore regulatory DNA variation and its functional consequences within Arabidopsis thaliana, using chromatin accessibility to delineate regulatory DNA genome-wide. Unlike in previous cross-species comparisons, the positional homology of regulatory DNA is maintained among A. thaliana ecotypes and less nucleotide divergence has occurred. Of the ∼50,000 regulatory sites in A. thaliana, we found that 15% varied in accessibility among ecotypes. Some of these accessibility differences were associated with extensive, previously unannotated sequence variation, encompassing many deletions and ancient hypervariable alleles. Unexpectedly, for the majority of such regulatory sites, nearby gene expression was unaffected. Nevertheless, regulatory sites with high levels of sequence variation and differential chromatin accessibility were the most likely to be associated with differential gene expression. Finally, and most surprising, we found that the vast majority of differentially accessible sites show no underlying sequence variation. We argue that these surprising results highlight the necessity to consider higher-order regulatory context in evaluating regulatory variation and predicting its phenotypic consequences.


2003 ◽  
Vol 376 (3) ◽  
pp. 607-613 ◽  
Author(s):  
Marthe MOLDES ◽  
Ying ZUO ◽  
Ron F. MORRISON ◽  
David SILVA ◽  
Bae-Hang PARK ◽  
...  

The Wnt/β-catenin signalling pathway appears to operate to maintain the undifferentiated state of preadipocytes by inhibiting adipogenic gene expression. To define the mechanisms regulating suppression of Wnt/β-catenin signalling, we analysed the β-catenin expression in response to activation of transcription factors that regulate adipogenesis. The results show an extensive down-regulation of nuclear β-catenin that occurs during the first few days of differentiation of 3T3-L1 preadipocytes and coincides with the induction of the adipogenic transcription factors, C/EBPβ (CCAAT-enhancer-binding protein) and PPARγ (peroxisome-proliferator-activated receptor). To assess the role of each of these factors in this process, we conditionally overexpressed C/EBPβ in Swiss mouse fibroblasts using the TET-off system. Abundant expression of C/EBPβ alone had minimal effect on β-catenin expression, whereas expression of C/EBPβ, in the presence of dexamethasone, induced PPARγ expression and caused a measurable decrease in β-catenin. In addition, exposure of cells expressing both C/EBPβ and PPARγ to a potent PPARγ ligand resulted in an even greater decrease in β-catenin by mechanisms that involve the proteasome. Our studies also suggest a reciprocal relationship between PPARγ activity and β-catenin expression, since ectopic production of Wnt-1 in preadipocytes blocked the induction of PPARγ gene expression. Moreover, by suppressing β-catenin expression, ectopic expression of PPARγ in Wnt-1-expressing preadipocytes rescued the block in adipogenesis after their exposure to the PPARγ ligand, troglitazone.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Martina Katharina Ried ◽  
Meritxell Antolín-Llovera ◽  
Martin Parniske

Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.


2019 ◽  
Vol 10 (2) ◽  
pp. 863-874
Author(s):  
Jerrin R. Cherian ◽  
Katherine V. Adams ◽  
Lisa N. Petrella

Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.


2019 ◽  
Author(s):  
Alexandra Plotnikova ◽  
Max J. Kellner ◽  
Magdalena Mosiolek ◽  
Michael A. Schon ◽  
Michael D. Nodine

SummaryMicroRNAs (miRNAs) are short non-coding RNAs that mediate the repression of target transcripts in plants and animals. Although miRNAs are required throughout plant development, relatively little is known regarding their embryonic functions. To systematically characterize embryonic miRNAs in Arabidopsis thaliana, we developed or applied high-throughput sequencing based methods to profile hundreds of miRNAs and associated targets throughout embryogenesis. We discovered dozens of miRNAs that dynamically cleave and repress target transcripts including 30 that encode transcription factors. Transcriptome analyses indicated that these miRNA:target interactions have a profound impact on embryonic gene expression programs, and we further demonstrated that the miRNA-mediated repression of six transcription factors were individually required for embryo morphogenesis. These data indicate that the miRNA-directed repression of multiple transcription factors is critically important for the establishment of the plant body plan, and provide a foundation to further investigate how miRNAs contribute to these initial cellular differentiation events.


2019 ◽  
Author(s):  
Jerrin R. Cherian ◽  
Lisa N. Petrella

ABSTRACTEstablishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°C, DREAM complex mutants show temperature associated increase in misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found 15 embryonically expressed transcription factors that suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen interact with the Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°C. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°C.


Sign in / Sign up

Export Citation Format

Share Document