scholarly journals Time elapsed between Zika and dengue virus infections affects antibody and T cell responses

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Erick X. Pérez-Guzmán ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Mariah A. Hassert ◽  
Alexandra Ortiz-Rosa ◽  
...  

Abstract Zika virus (ZIKV) and dengue virus (DENV) are co-endemic in many parts of the world, but the impact of ZIKV infection on subsequent DENV infection is not well understood. Here we show in rhesus macaques that the time elapsed after ZIKV infection affects the immune response to DENV infection. We show that previous ZIKV exposure increases the magnitude of the antibody and T cell responses against DENV. The time interval between ZIKV and subsequent DENV infection further affects the immune response. A mid-convalescent period of 10 months after ZIKV infection results in higher and more durable antibody and T cell responses to DENV infection than a short period of 2 months. In contrast, previous ZIKV infection does not affect DENV viremia or pro-inflammatory status. Collectively, we find no evidence of a detrimental effect of ZIKV immunity in a subsequent DENV infection. This supports the implementation of ZIKV vaccines that could also boost immunity against future DENV epidemics.

2019 ◽  
Author(s):  
Erick X. Pérez-Guzmán ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Mariah A. Hassert ◽  
Alexandra Ortiz-Rosa ◽  
...  

AbstractThe role of Zika virus (ZIKV) immunity on subsequent dengue virus (DENV) infections is relevant to anticipate the dynamics of forthcoming DENV epidemics in areas with previous ZIKV exposure. We study the effect of ZIKV infection with various strains on subsequent DENV immune response after 10 and 2 months of ZIKV infection in rhesus macaques. Our results show that a subsequent DENV infection in animals with early- and middle-convalescent periods to ZIKV do not promote an increase in DENV viremia nor pro-inflammatory status. Previous ZIKV exposure increases the magnitude of the antibody and T cell responses against DENV, and different time intervals between infections alter the magnitude and durability of such responses—more after longer ZIKV pre-exposure. Collectively, we find no evidence of a detrimental effect of ZIKV immunity in a subsequent DENV infection. This supports the implementation of ZIKV vaccines that could also boost immunity against future DENV epidemics.


2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Bobby Brooke Herrera ◽  
Wen-Yang Tsai ◽  
Charlotte A. Chang ◽  
Donald J. Hamel ◽  
Wei-Kung Wang ◽  
...  

ABSTRACT Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus enzyme-linked immunosorbent spot (ELISPOT) assay. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well as for potential flavivirus diagnostics based on T cell responses. IMPORTANCE The recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome have raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1862
Author(s):  
Alena Reguzova ◽  
Nico Fischer ◽  
Melanie Müller ◽  
Ferdinand Salomon ◽  
Thomas Jaenisch ◽  
...  

Although dengue virus (DENV) affects almost half of the world’s population there are neither preventive treatments nor any long-lasting and protective vaccines available at this time. The complexity of the protective immune response to DENV is still not fully understood. The most advanced vaccine candidates focus specifically on humoral immune responses and the production of virus-neutralizing antibodies. However, results from several recent studies have revealed the protective role of T cells in the immune response to DENV. Hence, in this study, we generated a novel and potent DENV vaccine candidate based on an Orf virus (ORFV, genus Parapoxvirus) vector platform engineered to encode five highly conserved or cross-reactive DENV human leukocyte antigen (HLA)-A*02- or HLA-B*07-restricted epitopes as minigenes (ORFV-DENV). We showed that ORFV-DENV facilitates the in vitro priming of CD8+ T cells from healthy blood donors based on responses to each of the encoded immunogenic peptides. Moreover, we demonstrated that peripheral blood mononuclear cells isolated from clinically confirmed DENV-positive donors stimulated with ORFV-DENV generate cytotoxic T cell responses to at least three of the expressed DENV peptides. Finally, we showed that ORFV-DENV could activate CD8+ T cells isolated from donors who had recovered from Zika virus (ZIKV) infection. ZIKV belongs to the same virus family (Flaviviridae) and has epitope sequences that are homologous to those of DENV. We found that highly conserved HLA-B*07-restricted ZIKV and DENV epitopes induced functional CD8+ T cell responses in PBMCs isolated from confirmed ZIKV-positive donors. In summary, this proof-of-concept study characterizes a promising new ORFV D1701-VrV-based DENV vaccine candidate that induces broad and functional epitope-specific CD8+ T cell responses.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Pritesh Desai ◽  
Vikas Tahiliani ◽  
Georges Abboud ◽  
Jessica Stanfield ◽  
Shahram Salek-Ardakani

ABSTRACTRespiratory infection with vaccinia virus (VacV) elicits robust CD8+T cell responses that play an important role in host resistance. In the lung, VacV encounters multiple tissue-resident antigen-presenting cell (APC) populations, but which cell plays a dominant role in priming of virus-specific CD8+effector T cell responses remains poorly defined. We used Batf3−/−mice to investigate the impact of CD103+and CD8α+dendritic cell (DC) deficiency on anti-VacV CD8+T cell responses. We found that Batf3−/−mice were more susceptible to VacV infection, exhibiting profound weight loss, which correlated with impaired accumulation of gamma interferon (IFN-γ)-producing CD8+T cells in the lungs. This was largely due to defective priming since early in the response, antigen-specific CD8+T cells in the draining lymph nodes of Batf3−/−mice expressed significantly reduced levels of Ki67, CD25, and T-bet. These results underscore a specific role for Batf3-dependent DCs in regulating priming and expansion of effector CD8+T cells necessary for host resistance against acute respiratory VacV infection.IMPORTANCEDuring respiratory infection with vaccinia virus (VacV), a member ofPoxviridaefamily, CD8+T cells play important role in resolving the primary infection. Effector CD8+T cells clear the virus by accumulating in the infected lungs in large numbers and secreting molecules such as IFN-γ that kill virally infected cells. However, precise cell types that regulate the generation of effector CD8+T cells in the lungs are not well defined. Dendritic cells (DCs) are a heterogeneous population of immune cells that are recognized as key initiators and regulators of T-cell-mediated immunity. In this study, we reveal that a specific subset of DCs that are dependent on the transcription factor Batf3 for their development regulate the magnitude of CD8+T cell effector responses in the lungs, thereby providing protection during pulmonary VacV infection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A469-A469
Author(s):  
Bernard Fox ◽  
Tarsem Moudgil ◽  
Traci Hilton ◽  
Noriko Iwamoto ◽  
Christopher Paustian ◽  
...  

BackgroundOutcomes for recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) are dismal and responses to anti-PD-1 appear best in tumors with PD-1+ T cells in proximity to PD-L1+ cells, arguing that improved outcome is associated with a pre-existing anti-cancer immune response. Based on this, we hypothesize that vaccines which prime and/or expand T cells to a spectrum of antigens overexpressed by HNSCC combined with T cell agonists, like anti-GITR, that provide costimulatory signals will improve the anti-PD-1 response rates. We have developed a cancer vaccine, DPV-001, that contains more than 300 proteins for genes overexpressed by HNSCC, encapsulated in a CLEC9A-targeted microvesicle and containing TLR/NOD agonists and DAMPs. Recently, we reported that combining anti-GITR + vaccine + anti-PD-1 augmented therapeutic efficacy in a preclinical model and now plan a phase 1b trial of this combination in patients with advanced HNSCC.MethodsSera from patients receiving DPV-001 as adjuvant therapy for definitively treated NSCLC, were analyzed for IgG responses to human proteins by MAP bead arrays and results compared to TCGA gene expression data sets for HNSCC. HNSCC cell lines were evaluated by RNASeq and peptides were eluted from HLA, analyzed by mass spectroscopy and correlated against MAP bead arrays and TCGA data sets. Tumor-reactive T cells from a vaccinated patient were enriched and expanded, and used in cytokine release assay (CRA) against autologous NSCLC and partially HLA matched allogeneic HNSCC cell lines.ResultsPatients receiving DPV-001 (N=13) made 147 IgG responses to at least 70 proteins for genes overexpressed by HNSCC. Preliminary evaluation of the HNSCC peptidome against the results of MAP bead array identify antigens that are target of a humoral immune response. Additionally, tumor-reactive T cells from DPV-001 vaccinated patient recognize two partially HLA-matched HNSCC targets, but not a mis-matched target.ConclusionsRecent observations from our lab and others have correlated IgG Ab responses with T cell responses to epitopes of the same protein. Based on the data summarized above, we hypothesize that we have induced T cell responses against a broad spectrum of shared cancer antigens that are common among adenocarcinomas and squamous cell cancers. Our planned clinical trial will vaccinate and boost the induced responses by costimulation with anti-GITR and then sequence in delayed anti-PD-1 to relieve checkpoint inhibition. MAP bead arrays and the peptidome library generated above will be used to assess anti-cancer B and T cell responses.Trial RegistrationNCT04470024Ethics ApprovalThe original clinical trial was approved by the Providence Portland Medical Center IRB, approval # 13-046. The proposed clinical trial has not yet been reviewed by the IRB.


2015 ◽  
Vol 89 (20) ◽  
pp. 10303-10318 ◽  
Author(s):  
Justine E. Sunshine ◽  
Brendan B. Larsen ◽  
Brandon Maust ◽  
Ellie Casey ◽  
Wenje Deng ◽  
...  

ABSTRACTTo understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24gagwere generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r= 0.43;P= 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack.IMPORTANCERapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Author(s):  
Felix G. Delgado ◽  
Karina I. Torres ◽  
Jaime E. Castellanos ◽  
Consuelo Romero-Sánchez ◽  
Etienne Simon-Lorière ◽  
...  

The high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infection. To determine the role of DENV pre-immunity in ZIKV infection, we analysed the T and B cell responses against ZIKV in donors with or without previous DENV infection. Using PBMCs from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the non-structural proteins NS1, NS3 and NS5. Analyses of the T and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors, in comparison with DENV-naïve donors. Strikingly, the potential for antibody mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.


Sign in / Sign up

Export Citation Format

Share Document