scholarly journals Network curvature as a hallmark of brain structural connectivity

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamza Farooq ◽  
Yongxin Chen ◽  
Tryphon T. Georgiou ◽  
Allen Tannenbaum ◽  
Christophe Lenglet

Abstract Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.

2017 ◽  
Author(s):  
Hamza Farooq ◽  
Yongxin Chen ◽  
Tryphon T. Georgiou ◽  
Allen Tannenbaum ◽  
Christophe Lenglet

AbstractStudies show that while brain networks are remarkably robust to a variety of adverse events, such as injuries and lesions due to accidents or disease, they may be fragile when the disturbance takes place in specific locations. This seems to be the case for diseases in which accumulated changes in network topology dramatically affect certain sensitive areas. To this end, previous attempts have been made to quantify robustness and fragility of brain functionality in two broadly defined ways: (i) utilizing model-based techniques to predict lesion effects, and (ii) studying empirical effects from brain lesions due to injury or disease. Both directions aim at assessing functional connectivity changes resulting from structural network variations. In the present work, we follow a more geometric viewpoint that is based on a notion of curvature of networks, the so-called Ollivier-Ricci curvature. A similar approach has been used in recent studies to quantify financial market robustness as well as to differentiate biological networks corresponding to cancer cells from normal cells. The same notion of curvature, defined at the node level for brain networks obtained from MRI data, may help identify and characterize the effects of diseases on specific brain regions. In the present paper, we apply the Ollivier-Ricci curvature to brain structural networks to: i) Demonstrate its unique ability to identify robust (or fragile) brain regions in healthy subjects. We compare our results to previously published work which identified a unique set of regions (called structural core) of the human cerebral cortex. This novel characterization of brain networks, complementary to measures such as degree, strength, clustering or efficiency, may be particularly useful to detect and monitor candidate areas for targeting by surgery (e.g. deep brain stimulation) or pharmaco-therapeutic agents; ii) Illustrate the power our curvature-derived measures to track changes in brain connectivity with healthy development/aging and; iii) Detect changes in brain structural connectivity in people with Autism Spectrum Disorders (ASD) which are in agreement with previous morphometric MRI studies.


2017 ◽  
Author(s):  
Moo K. Chung ◽  
Jamie L. Hanson ◽  
Nagesh Adluru ◽  
Andrew L. Alexander ◽  
Richard J. Davidson ◽  
...  

AbstractIn diffusion tensor imaging, structural connectivity between brain regions is often measured by the number of white matter fiber tracts connecting them. Other features such as the length of tracts or fractional anisotropy (FA) are also used in measuring the strength of connectivity. In this study, we investigated the effects of incorporating the number of tracts, the tract length and FA-values into the connectivity model. Using various node-degree based graph theory features, the three connectivity models are compared. The methods are applied in characterizing structural networks between normal controls and maltreated children, who experienced maltreatment while living in post-institutional settings before being adopted by families in the US.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kazuhiko Sawada ◽  
Shiori Kamiya ◽  
Ichio Aoki

Prenatal and neonatal exposure to valproic acid (VPA) is associated with human autism spectrum disorder (ASD) and can alter the development of several brain regions, such as the cerebral cortex, cerebellum, and amygdala. Neonatal VPA exposure induces ASD-like behavioral abnormalities in a gyrencephalic mammal, ferret, but it has not been evaluated in brain regions other than the cerebral cortex in this animal. This study aimed to facilitate a comprehensive understanding of brain abnormalities induced by developmental VPA exposure in ferrets. We examined gross structural changes in the hippocampus and tracked proliferative cells by 5-bromo-2-deoxyuridine (BrdU) labeling following VPA administration to ferret infants on postnatal days (PDs) 6 and 7 at 200 μg/g of body weight. Ex vivo short repetition time/time to echo magnetic resonance imaging (MRI) with high spatial resolution at 7-T was obtained from the fixed brain of PD 20 ferrets. The hippocampal volume estimated using MRI-based volumetry was not significantly different between the two groups of ferrets, and optical comparisons on coronal magnetic resonance images revealed no differences in gross structures of the hippocampus between VPA-treated and control ferrets. BrdU-labeled cells were observed throughout the hippocampus of both two groups at PD 20. BrdU-labeled cells were immunopositive for Sox2 (>70%) and almost immunonegative for NeuN, S100 protein, and glial fibrillary acidic protein. BrdU-labeled Sox2-positive progenitors were abundant, particularly in the subgranular layer of the dentate gyrus (DG), and were denser in VPA-treated ferrets. When BrdU-labeled Sox2-positive progenitors were examined at 2 h after the second VPA administration on PD 7, their density in the granular/subgranular layer and hilus of the DG was significantly greater in VPA-treated ferrets compared to controls. The findings suggest that VPA exposure to ferret infants facilitates the proliferation of DG progenitors, supplying excessive progenitors for hippocampal adult neurogenesis to the subgranular layer.


2020 ◽  
Vol 4 (3) ◽  
pp. 871-890
Author(s):  
Arseny A. Sokolov ◽  
Peter Zeidman ◽  
Adeel Razi ◽  
Michael Erb ◽  
Philippe Ryvlin ◽  
...  

Bridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 487 ◽  
Author(s):  
Billeci ◽  
Calderoni ◽  
Conti ◽  
Lagomarsini ◽  
Narzisi ◽  
...  

Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold (i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD; however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order to investigate: (i) the correlation between structural network organization and autistic features in preschoolers with ASD (all males; age range 1.5–5.2 years); (ii) the correlation between structural network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local network measures significantly correlated with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association emerged when considering the global measures of brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning (cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole, and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational transmission of these neural substrates. Overall, the results of this study may help in elucidating the neurostructural endophenotype of ASD, paving the way for bridging connections between underlying genetic and ASD symptomatology.


2020 ◽  
Vol 117 (33) ◽  
pp. 20244-20253 ◽  
Author(s):  
Muhua Zheng ◽  
Antoine Allard ◽  
Patric Hagmann ◽  
Yasser Alemán-Gómez ◽  
M. Ángeles Serrano

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.


2021 ◽  
Author(s):  
Fatima zahra Benabdallah ◽  
Ahmed Drissi El Maliani ◽  
Dounia Lotfi ◽  
Rachid Jennane ◽  
Mohammed El hassouni

Abstract Autism spectrum disorder (ASD) is theoretically characterized by alterations in functional connectivity between brain regions. Many works presented approaches to determine informative patterns that help to predict autism from typical development. However, most of the proposed pipelines are not specifically designed for the autism problem, i.e they do not corroborate with autism theories about functional connectivity. In this paper, we propose a framework that takes into account the properties of local connectivity and long range under-connectivity in the autistic brain. The originality of the proposed approach is to adopt elimination as a technique in order to well emerge the autistic brain connectivity alterations, and show how they contribute to differentiate ASD from controls. Experimental results conducted on the large multi-site Autism Brain Imaging Data Exchange (ABIDE) show that our approach provides accurate prediction up to 70% and succeeds to prove the existence of deficits in the long-range connectivity in the ASD subjects brains.


2020 ◽  
Author(s):  
Mariam Al Harrach ◽  
Pablo Pretzel ◽  
Samuel Groeschel ◽  
François Rousseau ◽  
Thijs Dhollander ◽  
...  

AbstractObjectivestudies of motor outcome after Neonatal Arterial Ischemic Stroke (NAIS) often rely on lesion mapping using MRI. However, clinical measurements indicate that motor deficit can be different than what would solely be anticipated by the lesion extent and location. Because this may be explained by the cortical disconnections between motor areas due to necrosis following the stroke, the investigation of the motor network can help in the understanding of visual inspection and outcome discrepancy. In this study, we propose to examine the structural connectivity between motor areas in NAIS patients compared to healthy controls in order to define the cortical and subcortical connections that can reflect the motor outcomeMethods30 healthy controls and 32 NAIS patients with and without Cerebral Palsy (CP) underwent MRI acquisition and manual assessment. The connectome of all participants was obtained from T1-weighted and diffusion-weighted imaging.Resultssignificant disconnections in the lesioned and contra-lesioned hemispheres of patients were found. Furthermore, significant correlations were detected between the structural connectivity metric of specific motor areas and manuality assessed by the Box and Block Test (BBT) scores in patients.Interpretationusing the connectivity measures of these links the BBT score can be estimated using a multiple linear regression model. In addition, the presence or not of CP can also be predicted using the KNN classification algorithm. According to our results, the structural connectome can be an asset in the estimation of gross manual dexterity and can help uncover structural changes between brain regions related to NAIS.


2018 ◽  
Author(s):  
J. Zimmermann ◽  
J.G. Griffiths ◽  
A.R. McIntosh

AbstractThe unique mapping of structural and functional brain connectivity (SC, FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects from the Human Connectome Project (HCP). We identified several sets of connections that each uniquely map onto different aspects of cognitive function. We found a small number of distributed SC and a larger set of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC and FC each show unique and distinct patterns of variance across subjects and differential relationships to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.Significance StatementStructural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal co-activations between activity of brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the correlations between SC, and FC with a wide range of cognitive tasks, respectively. These brain-behavioural patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


2020 ◽  
pp. 1-15
Author(s):  
Tommy Boshkovski ◽  
Ljupco Kocarev ◽  
Julien Cohen-Adad ◽  
Bratislav Mišić ◽  
Stéphane Lehéricy ◽  
...  

Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture.


Sign in / Sign up

Export Citation Format

Share Document