scholarly journals Hyperacetylated chromatin domains mark cell type-specific genes and suggest distinct modes of enhancer function

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sierra Fox ◽  
Jacquelyn A. Myers ◽  
Christina Davidson ◽  
Michael Getman ◽  
Paul D. Kingsley ◽  
...  

Abstract Stratification of enhancers by signal strength in ChIP-seq assays has resulted in the establishment of super-enhancers as a widespread and useful tool for identifying cell type-specific, highly expressed genes and associated pathways. We examine a distinct method of stratification that focuses on peak breadth, termed hyperacetylated chromatin domains (HCDs), which classifies broad regions exhibiting histone modifications associated with gene activation. We find that this analysis serves to identify genes that are both more highly expressed and more closely aligned to cell identity than super-enhancer analysis does using multiple data sets. Moreover, genetic manipulations of selected gene loci suggest that some enhancers located within HCDs work at least in part via a distinct mechanism involving the modulation of histone modifications across domains and that this activity can be imported into a heterologous gene locus. In addition, such genetic dissection reveals that the super-enhancer concept can obscure important functions of constituent elements.

2019 ◽  
Author(s):  
Sierra Fox ◽  
Jacquelyn A. Myers ◽  
Christina Davidson ◽  
Michael Getman ◽  
Paul D. Kingsley ◽  
...  

AbstractStratification of enhancers by relative signal strength in ChIP-seq assays has resulted in the establishment of super-enhancers as a widespread and useful tool for identifying cell type-specific, highly expressed genes and associated pathways. We have examined a distinct method of stratification that focuses on peak breadth, termed “hyperacetylated chromatin domains” (HCDs), which classifies broad regions exhibiting histone modifications associated with gene activation. We find that this analysis serves to identify genes that are both more highly expressed and more closely aligned to cell identity than super-enhancer analysis does when applied to multiple datasets. Moreover, genetic manipulations of selected gene loci suggest that at least some enhancers located within HCDs work at least in part via a distinct mechanism involving the modulation of covalent histone modifications across domains, and that this activity can be imported into a heterologous gene locus. In addition, such genetic dissection reveals that the super-enhancer concept can obscure important functions of constituent elements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


2020 ◽  
Vol 89 (1) ◽  
pp. 235-253 ◽  
Author(s):  
Mitzi I. Kuroda ◽  
Hyuckjoon Kang ◽  
Sandip De ◽  
Judith A. Kassis

Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type–specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type–specific transcriptional programming with exquisite fidelity is essential for normal development.


1994 ◽  
Vol 14 (11) ◽  
pp. 7134-7143 ◽  
Author(s):  
D A Sukovich ◽  
R Mukherjee ◽  
P A Benfield

The estrogen receptor (ER) typically activates gene transcription by binding to estrogen-responsive elements (EREs). The brain creatine kinase (BCK) promoter is responsive to estrogen but contains no ERE-related sequence. To investigate the mechanism of estrogen induction, we have introduced the estrogen receptor into HeLa cells and primary rat cardiomyocytes and fibroblasts along with 195 bp of BCK promoter linked to a chloramphenicol acetyltransferase (CAT) reporter gene. A 10-fold stimulation of CAT activity was observed in the presence of beta-estradiol in both HeLa and rat primary fibroblasts, but no induction was observed in primary rat cardiomyocytes. In contrast, a control vitellogenin gene construct which contains a typical ERE was induced in an ER-dependent manner in all cell types studied. Estrogen induction in HeLa was not sensitive to cycloheximide and was blocked by the ER antagonists tamoxifen and ICI 164,384. Analysis of 5' deletion and linker-scanning mutations indicates sequences between bp -45 and -75 including a TA-rich sequence and a CCAAT sequence to be crucial for stimulation of the BCK promoter by the ER. BCK estrogen induction is dependent on the DNA-binding domain and transactivation domain TAF2 of the ER. However, direct DNA binding is probably not required. Taken together, these results suggest a novel mechanism for ER-mediated gene activation. This mechanism is consensus ERE independent and cell type specific and requires interactions between the ER and molecules capable of interacting with the BCK promoter TA-rich region.


2021 ◽  
Author(s):  
Anthony Mark Raus ◽  
Tyson D Fuller ◽  
Nellie E Nelson ◽  
David A Valientes ◽  
Anita Bayat ◽  
...  

Aerobic exercise promotes physiological and molecular adaptations in neurons to influence brain function and behavior. The most well studied neurobiological consequences of exercise are those which underlie exercise-induced improvements in hippocampal memory, including the expression and regulation of the neurotrophic factor Bdnf. Whether aerobic exercise taking place during early-life periods of postnatal brain maturation has similar impacts on gene expression and its regulation remains to be investigated. Using unbiased next-generation sequencing we characterize gene expression programs and their regulation by specific, memory-associated histone modifications during juvenile-adolescent voluntary exercise (ELE). Traditional transcriptomic and epigenomic sequencing approaches have either used heterogeneous cell populations from whole tissue homogenates or flow cytometry for single cell isolation to distinguish cell types / subtypes. These methods fall short in providing cell-type specificity without compromising sequencing depth or procedure-induced changes to cellular phenotype. In this study, we use simultaneous isolation of translating mRNA and nuclear chromatin from a neuron-enriched cell population to more accurately pair ELE-induced changes in gene expression with epigenetic modifications. We employ a line of transgenic mice expressing the NuTRAP (Nuclear Tagging and Translating Ribosome Affinity Purification) cassette under the Emx1 promoter allowing for brain cell-type specificity. We then developed a technique that combines nuclear isolation using Isolation of Nuclei TAgged in Specific Cell Types (INTACT) with Translating Ribosomal Affinity Purification (TRAP) methods to determine cell type-specific epigenetic modifications influencing gene expression programs from a population of Emx1 expressing hippocampal neurons. Data from RNA-seq and CUT&RUN-seq were coupled to evaluate histone modifications influencing the expression of translating mRNA in neurons after early-life exercise (ELE). We also performed separate INTACT and TRAP isolations for validation of our protocol and demonstrate similar molecular functions and biological processes implicated by gene ontology (GO) analysis. Finally, as prior studies use tissue from opposite brain hemispheres to pair transcriptomic and epigenomic data from the same rodent, we take a bioinformatics approach to compare hemispheric differences in gene expression programs and histone modifications altered by by ELE. Our data reveal transcriptional and epigenetic signatures of ELE exposure and identify novel candidate gene-histone modification interactions for further investigation. Importantly, our novel approach of combined INTACT/TRAP methods from the same cell suspension allows for simultaneous transcriptomic and epigenomic sequencing in a cell-type specific manner.


Blood ◽  
2021 ◽  
Author(s):  
Bon Q Trinh ◽  
Simone Ummarino ◽  
Yanzhou Zhang ◽  
Alexander K Ebralidze ◽  
Mahmoud A Bassal ◽  
...  

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


2020 ◽  
Author(s):  
Bon Q. Trinh ◽  
Simone Ummarino ◽  
Alexander K. Ebralidze ◽  
Emiel van der Kouwe ◽  
Mahmoud A. Bassal ◽  
...  

ABSTRACTThe mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.KEY POINTSlncRNA LOUP coordinates with RUNX1 to induces PU.1 long-range transcription, conferring myeloid differentiation and inhibiting cell growth.RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression in t(8;21) AML.


2020 ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

ABSTRACTBackgroundChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear.To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL) to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3.ResultsChromosome regions (bands) of 10-50Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. We show that they comprise 1-5Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely.We found little change between cell cycle phases, whether compared by 5Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains.Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription.ConclusionsModified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


Sign in / Sign up

Export Citation Format

Share Document