scholarly journals Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Tu ◽  
María Katherine Mejía-Guerra ◽  
Jose A. Valdes Franco ◽  
David Tzeng ◽  
Po-Yu Chu ◽  
...  

Abstract The transcription regulatory network inside a eukaryotic cell is defined by the combinatorial actions of transcription factors (TFs). However, TF binding studies in plants are too few in number to produce a general picture of this complex network. In this study, we use large-scale ChIP-seq to reconstruct it in the maize leaf, and train machine-learning models to predict TF binding and co-localization. The resulting network covers 77% of the expressed genes, and shows a scale-free topology and functional modularity like a real-world network. TF binding sequence preferences are conserved within family, while co-binding could be key for their binding specificity. Cross-species comparison shows that core network nodes at the top of the transmission of information being more conserved than those at the bottom. This study reveals the complex and redundant nature of the plant transcription regulatory network, and sheds light on its architecture, organizing principle and evolutionary trajectory.

Author(s):  
Xiaoyu Tu ◽  
María Katherine Mejía-Guerra ◽  
Jose A Valdes Franco ◽  
David Tzeng ◽  
Po-Yu Chu ◽  
...  

AbstractThe transcription regulatory network underlying essential and complex functionalities inside a eukaryotic cell is defined by the combinatorial actions of transcription factors (TFs). However, TF binding studies in plants are too few in number to produce a general picture of this complex regulatory netowrk. Here, we used ChIP-seq to determine the binding profiles of 104 TF expressed in the maize leaf. With this large dataset, we could reconstruct a transcription regulatory network that covers over 77% of the expressed genes, and reveal its scale-free topology and functional modularity like a real-world network. We found that TF binding occurs in clusters covering ∼2% of the genome, and shows enrichment for sequence variations associated with eQTLs and GWAS hits of complex agronomic traits. Machine-learning analyses were used to identify TF sequence preferences, and showed that co-binding is key for TF specificity. The trained models were used to predict and compare the regulatory networks in other species and showed that the core network is evolutionarily conserved. This study provided an extensive description of the architecture, organizing principle and evolution of the transcription regulatory network inside the plant leaf.


2017 ◽  
Vol 41 (1) ◽  
pp. 239-251 ◽  
Author(s):  
Yi Lou ◽  
Yi-Dan Chen ◽  
Fu-Rong Sun ◽  
Jun-Ping Shi ◽  
Yu Song ◽  
...  

Background and Aim: The incidence of nonalcoholic fatty liver disease (NAFLD), ranging from mild steatosis to hepatocellular injury and inflammation, increases with the rise of obesity. However, the implications of transcription factors network in progressive NAFLD remain to be determined. Methods: A co-regulatory network approach by combining gene expression and transcription influence was utilized to dissect transcriptional regulators in different NAFLD stages. In vivo, mice models of NAFLD were used to investigate whether dysregulated expression be undertaken by transcriptional regulators. Results: Through constructing a large-scale co-regulatory network, sample-specific regulator activity was estimated. The combinations of active regulators that drive the progression of NAFLD were identified. Next, top regulators in each stage of NAFLD were determined, and the results were validated using the different experiments and bariatric surgical samples. In particular, Adipocyte enhancer-binding protein 1 (AEBP1) showed increased transcription activity in nonalcoholic steatohepatitis (NASH). Further characterization of the AEBP1 related transcription program defined its co-regulators, targeted genes, and functional organization. The dynamics of AEBP1 and its potential targets were verified in an animal model of NAFLD. Conclusions: This study identifies putative functions for several transcription factors in the pathogenesis of NAFLD and may thus point to potential targets for therapeutic interventions.


2013 ◽  
Vol 35 (10) ◽  
pp. 1198-1208
Author(s):  
Zhi-Qiang CHEN ◽  
Xin-Huan HAN ◽  
Qin-Jun WEI ◽  
Guang-Qian XING ◽  
Xin CAO

2021 ◽  
Vol 22 (11) ◽  
pp. 5902
Author(s):  
Stefan Nagel ◽  
Claudia Pommerenke ◽  
Corinna Meyer ◽  
Hans G. Drexler

Recently, we documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in human myelopoiesis including monocytes and their derived dendritic cells (DCs). Here, we enlarge this map to include normal NKL homeobox gene expressions in progenitor-derived DCs. Analysis of public gene expression profiling and RNA-seq datasets containing plasmacytoid and conventional dendritic cells (pDC and cDC) demonstrated HHEX activity in both entities while cDCs additionally expressed VENTX. The consequent aim of our study was to examine regulation and function of VENTX in DCs. We compared profiling data of VENTX-positive cDC and monocytes with VENTX-negative pDC and common myeloid progenitor entities and revealed several differentially expressed genes encoding transcription factors and pathway components, representing potential VENTX regulators. Screening of RNA-seq data for 100 leukemia/lymphoma cell lines identified prominent VENTX expression in an acute myelomonocytic leukemia cell line, MUTZ-3 containing inv(3)(q21q26) and t(12;22)(p13;q11) and representing a model for DC differentiation studies. Furthermore, extended gene analyses indicated that MUTZ-3 is associated with the subtype cDC2. In addition to analysis of public chromatin immune-precipitation data, subsequent knockdown experiments and modulations of signaling pathways in MUTZ-3 and control cell lines confirmed identified candidate transcription factors CEBPB, ETV6, EVI1, GATA2, IRF2, MN1, SPIB, and SPI1 and the CSF-, NOTCH-, and TNFa-pathways as VENTX regulators. Live-cell imaging analyses of MUTZ-3 cells treated for VENTX knockdown excluded impacts on apoptosis or induced alteration of differentiation-associated cell morphology. In contrast, target gene analysis performed by expression profiling of knockdown-treated MUTZ-3 cells revealed VENTX-mediated activation of several cDC-specific genes including CSFR1, EGR2, and MIR10A and inhibition of pDC-specific genes like RUNX2. Taken together, we added NKL homeobox gene activities for progenitor-derived DCs to the NKL-code, showing that VENTX is expressed in cDCs but not in pDCs and forms part of a cDC-specific gene regulatory network operating in DC differentiation and function.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Soren Wainio-Theberge ◽  
Annemarie Wolff ◽  
Georg Northoff

AbstractSpontaneous neural activity fluctuations have been shown to influence trial-by-trial variation in perceptual, cognitive, and behavioral outcomes. However, the complex electrophysiological mechanisms by which these fluctuations shape stimulus-evoked neural activity remain largely to be explored. Employing a large-scale magnetoencephalographic dataset and an electroencephalographic replication dataset, we investigate the relationship between spontaneous and evoked neural activity across a range of electrophysiological variables. We observe that for high-frequency activity, high pre-stimulus amplitudes lead to greater evoked desynchronization, while for low frequencies, high pre-stimulus amplitudes induce larger degrees of event-related synchronization. We further decompose electrophysiological power into oscillatory and scale-free components, demonstrating different patterns of spontaneous-evoked correlation for each component. Finally, we find correlations between spontaneous and evoked time-domain electrophysiological signals. Overall, we demonstrate that the dynamics of multiple electrophysiological variables exhibit distinct relationships between their spontaneous and evoked activity, a result which carries implications for experimental design and analysis in non-invasive electrophysiology.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Guangzhong Xu ◽  
Kai Li ◽  
Nengwei Zhang ◽  
Bin Zhu ◽  
Guosheng Feng

Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer.Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed.Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer.Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis.


2016 ◽  
Vol 12 (2) ◽  
pp. 588-597 ◽  
Author(s):  
Jun Wu ◽  
Xiaodong Zhao ◽  
Zongli Lin ◽  
Zhifeng Shao

Transcriptional regulation is a basis of many crucial molecular processes and an accurate inference of the gene regulatory network is a helpful and essential task to understand cell functions and gain insights into biological processes of interest in systems biology.


Sign in / Sign up

Export Citation Format

Share Document