scholarly journals Increased RNA editing in maternal immune activation model of neurodevelopmental disease

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hadas Tsivion-Visbord ◽  
Eli Kopel ◽  
Ariel Feiglin ◽  
Tamar Sofer ◽  
Ran Barzilay ◽  
...  

Abstract The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.

2022 ◽  
Author(s):  
Tom Johnson ◽  
Defne Saatci ◽  
Lahiru Handunnetthi

Susceptibility to schizophrenia is mediated by genetic and environmental risk factors. Infection driven maternal immune activation (MIA) during pregnancy is a key environmental risk factor. However, little is known about how MIA during pregnancy could contribute to adult-onset schizophrenia. In this study, we investigated if maternal immune activation induces changes in methylation of genes linked to schizophrenia. We found that differentially expressed genes in schizophrenia brain were significantly enriched among MIA induced differentially methylated genes in the foetal brain in a cell-type-specific manner. Upregulated genes in layer V pyramidal neurons were enriched among hypomethylated genes at gestational day 9 (fold change = 1.57 , FDR = 0.049) and gestational day 17 (fold change = 1.97 , FDR = 0.0006). We also found that downregulated genes in GABAergic Rosehip interneurons were enriched among hypermethylated genes at gestational day 17 (fold change = 1.62, FDR= 0.03). Collectively, our results highlight a connection between MIA driven methylation changes during gestation and schizophrenia gene expression signatures in the adult brain. These findings carry important implications for early preventative strategies in schizophrenia.


2007 ◽  
Vol 27 (40) ◽  
pp. 10695-10702 ◽  
Author(s):  
S. E. P. Smith ◽  
J. Li ◽  
K. Garbett ◽  
K. Mirnics ◽  
P. H. Patterson

2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Sarah Canetta ◽  
Alan Brown

AbstractA body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S244-S244
Author(s):  
Cameron Carter ◽  
Tyler Lesh ◽  
Ana-Maria Iosef ◽  
Costin Tanase ◽  
Rosa Vaslova ◽  
...  

Abstract Background A key finding in developmental neurobiology is a widespread role for immune molecules in normal brain development and synaptic function and evidence has been accumulating for an immune-based developmental pathophysiology in psychiatric disorders, particularly in schizophrenia. Epidemiological studies have revealed an increased incidence of schizophrenia in offspring of mothers who had an infection during pregnancy while GWAS studies have identified genetic links to the major histocompatibility complex and peripheral changes in immune markers are widely reported in the illness. The murine maternal immune activation model system is widely used to investigate the effects of immune activation during pregnancy on brain development in behavior in offspring. Here we report findings from an ongoing study of a unique cohort on non-human primates (NHP) who underwent MIA (compared to controls) on a promising biomarker of neuroimmune perturbation in vivo--extracellular free water--a diffusion magnetic resonance imaging measure obtained with a multi-shell acquisition, which we have shown in multiple studies to be increased in young people with early psychosis. Methods Fourteen pregnant rhesus monkeys (Macaca mulatta) received polyICLC and 14 control animals have been scanned prospectively from both to their current age of 3.5 years. The offspring from both groups underwent a diffusion MRI scan on a 3 Tesla Siemens Skyra scanner in which multiple b-value shells were acquired to improve estimation of extracellular free water. Data were collected when the offspring were 1, 6, 12, 24 and 36 months to date. Diffusion images were nonlinearly aligned to individual subject MPRAGE scans, which were segmented and parcellated into regions of interest using multi-atlas techniques. For this preliminary analysis, frontal, cingulate, and temporo-limbic regions were selected as a priori ROIs in addition to whole-brain gray and white matter masks. Group differences were assessed using repeated measures ANOVA and independent samples t-tests. Results Results from birth to age 2 years showed a significant main effect of group in both white (p<.05) and gray (p<.001) cingulate cortex free water, with MIA-exposed offspring showing higher free water. Similar trends were also identified in prefrontal white matter free water (p=.07) and whole-brain white (p=.11) and gray matter free water (p=.07). No significant group by time interactions were identified. Data analysis is currently underway including the 3-year time point. Discussion Despite the lack of gross behavioral abnormalities at age 2, extracellular free water values are increased in MIA-exposed offspring, particularly in the cingulate cortex. More global whole-brain free water group differences, however, did not reach statistical significance, which may indicate some regional specificity to these changes early in development. These NHP MIA model complement the human schizophrenia literature in which extracellular free water increases have been repeatedly identified. And show that changes in the brain occur early in life, well before the emergence of atypical behaviors in the NHP model.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kana Ozaki ◽  
Daisuke Kato ◽  
Ako Ikegami ◽  
Akari Hashimoto ◽  
Shouta Sugio ◽  
...  

AbstractMaternal infection or inflammation causes abnormalities in brain development associated with subsequent cognitive impairment and in an increased susceptibility to schizophrenia and autism spectrum disorders. Maternal immune activation (MIA) and increases in serum cytokine levels mediates this association via effects on the fetal brain, and microglia can respond to maternal immune status, but consensus on how microglia may respond is lacking and no-one has yet examined if microglial process motility is impaired. In this study we investigated how MIA induced at two different gestational ages affected microglial properties at different developmental stages. Immune activation in mid-pregnancy increased IL-6 expression in embryonic microglia, but failed to cause any marked changes in morphology either at E18 or postnatally. In contrast MIA, particularly when induced earlier (at E12), caused sustained alterations in the patterns of microglial process motility and behavioral deficits. Our research has identified an important microglial property that is altered by MIA and which may contribute to the underlying pathophysiological mechanisms linking maternal immune status to subsequent risks for cognitive disease.


2020 ◽  
Author(s):  
Cesar P. Canales ◽  
Myka L. Estes ◽  
Karol Cichewicz ◽  
Kartik Angara ◽  
John Paul Aboubechara ◽  
...  

AbstractBackgroundEnvironmental insults that activate the maternal immune system are potent primers of developmental neuropathology and maternal immune activation (MIA) has emerged as a risk factor for neurodevelopmental and psychiatric disorders. Animal models of MIA provide an opportunity to identify molecular pathways that initiate disease processes and lead to neuropathology and behavioral deficits in offspring. MIA-induced behaviors are accompanied by anatomical and neurochemical alterations in adult offspring that parallel those seen in affected human populations.MethodsWe performed transcriptional profiling and neuroanatomical characterization in a time course across mouse embryonic cortical development, following MIA via single injection of the viral mimic polyinosinic:polycytidylic acid (polyI:C) at E12.5. Transcriptional changes identified in the cortex of MIA offspring at E17.5 were validated and mapped to cortical neuroanatomy and cell types via protein analysis and immunohistochemistry.ResultsMIA induced strong transcriptomic signatures, including induction of genes associated with hypoxia, immune signaling, and angiogenesis. The acute response identified 6h after the MIA insult was followed by changes in proliferation, neuronal and glial differentiation, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cell types in germinal zones and alterations in neuronal and glial cell types across cortical lamina were identified in the MIA-exposed cortex.ConclusionsMIA-induced transcriptomic signatures in fetal offspring overlap significantly with perturbations identified in neurodevelopmental disorders (NDDs), and provide novel insights into alterations in molecular and developmental timing processes linking MIA and neuropathology, potentially revealing new targets for development of novel approaches for earlier diagnosis and treatment of these disorders.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Cesar P Canales ◽  
Myka L Estes ◽  
Karol Cichewicz ◽  
Kartik Angara ◽  
John Paul Aboubechara ◽  
...  

In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by six hours following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.


FACE ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 44-50
Author(s):  
Mohamad Masoumy ◽  
Emily P. Masoumy ◽  
Babak Baban ◽  
Jack C. Yu

Objective: Viral infections during pregnancy can cause disturbance in normal craniofacial morphogenesis. While some pathogens such as cytomegalovirus and herpes simplex are familiar to us, others remain obscure. This review examines the arbovirus-induced cranial deformities and combines biomechanics with growth dynamics to gain a deeper appreciation of this complex morphogenetic process. Materials and Methods: Using Wolfram Alpha, we analyzed the impact of cell population changes. The growth dynamics of the brain, and thus the size of the calvarium, followed 2 potential logistic curves: compensated and uncompensated. To understand the potential mechanism of cell loss, we performed literature review on maternal immune activation and viral tropism for neurons and glial cells. Results: With arboviral infections such as Zika, uncompensated loss of cells during the critical phases of fetal brain development reduces the intracranial mass and therefore decreases the tensile stress across the cranial sutures. The deflationary effect produces microcephaly by subduction and reduced osteogenesis seen clinically in these infants. Conclusion: Many viral infections cause intense maternal immune activation, some have neurotropism and can result in cell loss within the developing cranium. Unable to overcome this loss, the cranium assumes a new, abnormal shape and volume. Secondary calvarial deformities is due to, and should not cause, changes in brain development.


Sign in / Sign up

Export Citation Format

Share Document