scholarly journals Vestigial-like 1 is a shared targetable cancer-placenta antigen expressed by pancreatic and basal-like breast cancers

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherille D. Bradley ◽  
Amjad H. Talukder ◽  
Ivy Lai ◽  
Rebecca Davis ◽  
Hector Alvarez ◽  
...  

Abstract Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues. Here we show that VGLL1-specific CTLs expanded from the blood of a PDAC patient could recognize and kill in an antigen-specific manner a majority of HLA-A*0101 allogeneic tumor cell lines derived not only from PDAC, but also bladder, ovarian, gastric, lung, and basal-like breast cancers. Gene expression profiling reveals VGLL1 as a member of a unique group of cancer-placenta antigens (CPA) that may constitute immunotherapeutic targets for patients with multiple cancer types.

2021 ◽  
Vol 118 (21) ◽  
pp. e2016904118
Author(s):  
Derek K. Cheng ◽  
Tobiloba E. Oni ◽  
Jennifer S. Thalappillil ◽  
Youngkyu Park ◽  
Hsiu-Chi Ting ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. TPS467-TPS467 ◽  
Author(s):  
Jayesh Desai ◽  
Jeremy S. Kortmansky ◽  
Neil Howard Segal ◽  
Marwan Fakih ◽  
Do-Youn Oh ◽  
...  

TPS467 Background: CIT has significant survival benefits across multiple tumor types, but durable response is experienced by only subsets of patients (pts). To extend clinical benefit to more pts, efficacious CIT combinations (combos) targeting multiple cancer immune escape mechanisms need to be identified. The MORPHEUS platform includes multiple ph Ib/II trials designed to identify early signals of safety and efficacy of CIT combos. Using a randomized trial design, multiple treatment (tx) arms are compared with a single control arm in each pt cohort. We present three GI-specific MORPHEUS trials, each assessing CIT combos that could concurrently enhance multiple aspects of the cancer immune response. Methods: The MORPHEUS trials described here are global, open-label, randomized, Ph Ib/II trials enrolling pts with pancreatic ductal adenocarcinoma (PDAC), gastric or gastroesophageal junction cancers or colorectal cancer (CRC). New arms with novel CIT combos (table) are opened as new txs become available, and arms with minimal efficacy or unacceptable toxicity are closed. Studies include multiple cohorts for pts receiving different lines of tx (1L and 2L PDAC and gastric; 3L CRC). Pts with loss of clinical benefit or unacceptable toxicity may be eligible to enroll in a different CIT combo arm. Primary endpoints include safety and investigator-assessed ORR (RECIST v1.1); secondary endpoints: PFS, OS, DCR and DOR. Clinical trial information: NCT03193190, NCT03281369, NCT03555149. [Table: see text]


2020 ◽  
Vol 21 (24) ◽  
pp. 9608
Author(s):  
Valentina Tedeschi ◽  
Giorgia Paldino ◽  
Fabiana Paladini ◽  
Benedetta Mattorre ◽  
Loretta Tuosto ◽  
...  

The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet’s disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the “mis-immunopeptidome” that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 243-243 ◽  
Author(s):  
Mei-Juan Tu ◽  
Yu-Zhuo Pan ◽  
Jing-Xin Qiu ◽  
Edward Jae-hoon Kim ◽  
Aiming Yu

243 Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Better understanding of pancreatic cancer biology and identification of new targets are highly warranted. MicroRNAs (miRs or miRNAs) play a critical role in the control of tumor progression via crosstalk with cancer signaling pathways. Our recent studies showed that miR-1291 improved chemosensitivity through targeting of efflux transporter ABCC1. This current study investigated the mechanistic role of miR-1291 in the suppression of pancreatic tumorigenesis. Methods: PANC-1 and AsPC-1 cell lines were stably transfected with miR-1291. Cell cycle status and apoptosis of stable miR-1291-expressing cells were tested against control cells using flow cytometry. Cells were injected subcutaneously into nude mice and tumorigenesis was measured in vivo. Proteomic studies were performed by two-dimensional difference gel electrophoresis, matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis. Computationally predicted miR-1291 targets were assessed by luciferase reporter assay and Western blot. Primary PDAC and control samples were tested for miR-1291 and target gene expression levels. Results: Our data showed that stable miR-1291-expressing PANC-1 and AsPC-1 cells both showed a significantly lower rate of proliferation than the control cells, which was associated with a cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 suppressed the tumorigenesis of PANC-1 cells in mouse models in vivo. Proteomic studies revealed the protein level of several cancer-related genes were downregulated by miR-1291, including a pancreatic tumor promoting protein AGR2 which was reduced ~10-fold. Through computational and experimental studies we further identified that FOXA2, a transcription factor governing AGR2 expression, was a direct target of miR-1291. In addition, we found a significant down-regulation of miR-1291 in a set of PDAC patient tumor samples overexpressing AGR2. Conclusions: These results indicate that miR-1291 suppresses pancreatic tumorigenesis via targeting of FOXA2-AGR regulatory pathway providing new insight supporting development of miR-1291-based therapy for PDAC.


2020 ◽  
Author(s):  
Derek K. Cheng ◽  
Tobiloba E. Oni ◽  
Youngkyu Park ◽  
Jennifer S. Thalappillil ◽  
Hsiu-Chi Ting ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC.Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways and toxicity due to the targeting of normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil new potential therapeutic targets. Here, we used proximity labelling to identify protein interactors of active KRAS in PDAC cells. Fusions of wildtype (BirA-KRAS4B), mutant (BirA-KRAS4BG12D) and non-transforming and cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase were expressed in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 was enriched among proteins that selectively interacted with membrane-bound KRASG12D. RSK1 required the NF1 and SPRED proteins to interact with KRAS-GTP at the membrane. In both murine and human PDAC lines, membrane-targeted RSK1 was tolerated but inhibited cell proliferation following oncogenic KRAS abrogation to reveal a negative feedback role for membrane-localized RSK1 on wild-type KRAS. Inhibition of the wild-type KRAS, which has been previously proposed to suppress KRAS oncogenesis, may partially explain how RSK1 has been identified as a dependency in some KRAS mutant cells and may provide an additional function for NF1 in tumorigenesis.Significance StatementFor decades, KRAS interactors have been sought after as potential therapeutic targets in KRAS mutant cancers, especially pancreatic adenocarcinoma (PDAC). Our proximity labeling screen with KRAS in PDAC cells highlight RSK1 as a notable mutant-specific interactor. Functionally, we show that RSK1 mediates negative feedback on wild-type KRAS in PDAC cells.


Sign in / Sign up

Export Citation Format

Share Document