scholarly journals Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shenglong Chu ◽  
Wenjing Chen ◽  
Zhibin Fang ◽  
Xun Xiao ◽  
Yan Liu ◽  
...  

AbstractLarge-area light-emitting diodes (LEDs) fabricated by mass-production techniques are needed for low-cost flat-panel lighting. Nevertheless, it is still challenging to fabricate efficient large-area LEDs using organic small molecules (OLEDs), quantum dots (QLEDs), polymers (PLEDs), and recently-developed hybrid perovskites (PeLEDs) due to difficulties controlling film uniformity. To that end, we report sol-gel engineering of low-temperature blade-coated methylammonium lead iodide (MAPbI3) perovskite films. The precipitation, gelation, aging, and phase transformation stages are dramatically shortened by using a diluted, organoammonium-excessed precursor, resulting in ultra-flat large-area films (54 cm2) with roughness reaching 1 nm. The external quantum efficiency of doctor-bladed PeLEDs reaches 16.1%, higher than that of best-performing blade-coated OLEDs, QLEDs, and PLEDs. Furthermore, benefitting from the throughput of the blade-coating process and cheap materials, the expected cost of the emissive layer is projected to be as low as 0.02 cents per cm2, emphasizing its application potential.

2019 ◽  
Vol 7 (31) ◽  
pp. 18275-18284 ◽  
Author(s):  
Qiuju Liu ◽  
Yanan Zhao ◽  
Yinxing Ma ◽  
Xuan Sun ◽  
Wenqi Ge ◽  
...  

A new mixed solvent enables rapid fabrication of high-quality perovskite films directly by one-step spin-coating or blade-coating.


1999 ◽  
Vol 598 ◽  
Author(s):  
D. Marciu ◽  
M. B. Miller ◽  
J. R. Heflin ◽  
M. A. Murray ◽  
A. L. Ritter ◽  
...  

ABSTRACTIonically self-assembled monolayer (ISAM) films are a recently developed class of materials that allows detailed structural and thickness control at the sub-nanometer level combined with ease of manufacturing and low cost. The ISAM fabrication method simply involves the dipping of a charged substrate alternately into polycationic and polyanionic aqueous solutions at room temperatures. Importantly, the ISAM technique yields exceptionally homogeneous, large area films with excellent control of total film thickness. We describe detailed studies of ISAM light emitting diodes incorporating poly(para-phenylene vinylene) (PPV) as the light emitting polymer. The individual thickness of each monolayer and the interpenetration of adjacent layers can be precisely controlled through the parameters of the electrolyte solutions. The effects of the pH and ionic strength of the immersion solutions, the total film thickness, and the PPV thermal conversion parameters on the photoluminescence and electroluminescence yields have been systematically studied. The ISAM process also allows the advantage of depositing well-defined thicknesses of separate polymers at the indium tin oxide and the aluminum electrode interfaces.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Erickstad ◽  
E. Gutierrez ◽  
A. Groisman

An LED-based UV-light source producing collimated uniform illumination over a large area is built and used to fabricate PDMS microchannels with near-rectangular profiles and depths up to 300 μm.


2020 ◽  
Author(s):  
Haoran Wang ◽  
Xiwen Gong ◽  
Dewei Zhao ◽  
Yong-Biao Zhao ◽  
Sheng Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


Sign in / Sign up

Export Citation Format

Share Document