scholarly journals Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ziao Tian ◽  
Borui Xu ◽  
Guangchao Wan ◽  
Xiaomin Han ◽  
Zengfeng Di ◽  
...  

AbstractMotile plant structures such as Mimosa pudica leaves, Impatiens glandulifera seedpods, and Dionaea muscipula leaves exhibit fast nastic movements in a few seconds or less. This motion is stimuli-independent mechanical movement following theorema egregium rules. Artificial analogs of tropistic motion in plants are exemplified by shape-morphing systems, which are characterized by high functional robustness and resilience for creating 3D structures. However, all shape-morphing systems developed so far rely exclusively on continuous external stimuli and result in slow response. Here, we report a Gaussian-preserved shape-morphing system to realize ultrafast shape morphing and non-volatile reconfiguration. Relying on the Gaussian-preserved rules, the transformation can be triggered by mechanical or thermal stimuli within a microsecond. Moreover, as localized energy minima are encountered during shape morphing, non-volatile configuration is preserved by geometrically enhanced rigidity. Using this system, we demonstrate a suite of electronic devices that are reconfigurable, and therefore, expand functional diversification.

2019 ◽  
Vol 4 (33) ◽  
pp. eaax7044 ◽  
Author(s):  
Arda Kotikian ◽  
Connor McMahan ◽  
Emily C. Davidson ◽  
Jalilah M. Muhammad ◽  
Robert D. Weeks ◽  
...  

There is growing interest in creating untethered soft robotic matter that can repeatedly shape-morph and self-propel in response to external stimuli. Toward this goal, we printed soft robotic matter composed of liquid crystal elastomer (LCE) bilayers with orthogonal director alignment and different nematic-to-isotropic transition temperatures (TNI) to form active hinges that interconnect polymeric tiles. When heated above their respective actuation temperatures, the printed LCE hinges exhibit a large, reversible bending response. Their actuation response is programmed by varying their chemistry and printed architecture. Through an integrated design and additive manufacturing approach, we created passively controlled, untethered soft robotic matter that adopts task-specific configurations on demand, including a self-twisting origami polyhedron that exhibits three stable configurations and a “rollbot” that assembles into a pentagonal prism and self-rolls in programmed responses to thermal stimuli.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Jae Gyeong Lee ◽  
Sukyoung Won ◽  
Jeong Eun Park ◽  
Jeong Jae Wie

Abstract The selective light absorption of prestretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting the construction of transparent 3D architectures. In this study, we demonstrate the facile preparation of transparent 3D curvilinear structures with the selection of the curvature sign and chirality via the selective light absorption of detachable tapes. The sequential removal of adhesive patterns allowed sequential folding and the control of strain responsivity in a single transparent architecture. The introduction of multiple heterogeneous nonresponsive materials increased the complexity of strain engineering and functionality. External stimuli responsive kirigami-based bridge triggered the multimaterial frame to build the Gaussian curvature. Conductive material casted on the film in a pattern retained the conductivity, despite local deformation. This type of tape patterning system, adopting various materials, can achieve multifunction including transparency and conductivity.


Author(s):  
Jae Gyeong Lee ◽  
Sukyoung Won ◽  
Jeong Eun Park ◽  
Jeong Jae Wie

Abstract The selective light absorption of pre-stretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting the construction of transparent 3D architectures. In this study, we demonstrate the facile preparation of transparent 3D curvilinear structures with the selection of the curvature sign and chirality via the selective light absorption of detachable tapes. The sequential removal of adhesive patterns allowed sequential folding and the control of strain responsivity in a single transparent architecture. The introduction of multiple heterogeneous non-responsive materials increased the complexity of strain engineering and functionality. External stimuli responsive kirigami-based bridge triggered the multi-material frame to build the Gaussian curvature. Conductive material casted on the film in a pattern retained the conductivity, despite local deformation. This type of tape patterning system, adopting various materials, can achieve multifunction including transparency and conductivity.


Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


2021 ◽  
Vol 22 (5) ◽  
pp. 2491
Author(s):  
Yujin Park ◽  
Kang Moo Huh ◽  
Sun-Woong Kang

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


2021 ◽  
Author(s):  
Tatsuya Osaki ◽  
Yoshiho Ikeuchi

AbstractMacroscopic axonal connections in the human brain distribute information and neuronal activity across the brain. Although this complexity previously hindered elucidation of functional connectivity mechanisms, brain organoid technologies have recently provided novel avenues to investigate human brain function by constructing small segments of the brain in vitro. Here, we describe the neural activity of human cerebral organoids reciprocally connected by a bundle of axons. Compared to conventional organoids, connected organoids produced significantly more intense and complex oscillatory activity. Optogenetic manipulations revealed that the connected organoids could re-play and recapitulate over time temporal patterns found in external stimuli, indicating that the connected organoids were able to form and retain temporal memories. Our findings suggest that connected organoids may serve as powerful tools for investigating the roles of macroscopic circuits in the human brain – allowing researchers to dissect cellular functions in three-dimensional in vitro nervous system models in unprecedented ways.


2021 ◽  
Author(s):  
Shengli Mi ◽  
Hongyi Yao ◽  
Xiaoyu Zhao ◽  
Wei Sun

Abstract The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional materials. Companioned with the mechanism of structural or cellular materials1–5, the ancient wisdom of origami6–11 and kirigami12–16 and the involvement of multiphysics interaction2,17,18 enrich the programable mechanical behaviors of metamaterials, including shape-morphing8,12,14,16,19, compliance4,5,8,17,20, texture2,18,21, and topology11,18,22−25. However, typical design strategies are mainly convergent, which transfers various structures into one family of metamaterials that are relatively incompatible with the others and do not fully bring combinatorial principles3,10,26 into play. Here, we report a divergent strategy that designs a clan of mechanical metamaterials with diverse properties derived from a symmetric curve consisting of serpentines and arcs. We derived this composite curve into planar and cubic unit-cells and modularized them by attaching magnetics. Moreover, stacking each of them yields two- and three-dimensional auxetic metamaterials, respectively. Assembling with both modules, we achieved three thick plate-like metamaterials separately with flexibility, in-plane buckling, and foldability. Furthermore, we demonstrated that the hybrid of paradox properties is possible by combining two of the above assembles. We anticipate that this divergent strategy paves the path of building a hierarchical library of diverse combinable mechanical metamaterials and making conventional convergent strategies more efficient to various requests. Main


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 796 ◽  
Author(s):  
Honghui Chu ◽  
Wenguang Yang ◽  
Lujing Sun ◽  
Shuxiang Cai ◽  
Rendi Yang ◽  
...  

Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.


2019 ◽  
Vol 7 (10) ◽  
pp. 1597-1624 ◽  
Author(s):  
Alina Kirillova ◽  
Leonid Ionov

Smart polymers that are capable of controlled shape transformations under external stimuli have attracted significant attention in the recent years due to the resemblance of this behavior to the biological intelligence observed in nature. In this review, we focus on the recent progress in the field of shape-morphing polymers, highlighting their most promising applications in the biomedical field.


Sign in / Sign up

Export Citation Format

Share Document