scholarly journals Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiuye Li ◽  
W. Michael Babinchak ◽  
Witold K. Surewicz

AbstractAmyotrophic lateral sclerosis and several other neurodegenerative diseases are associated with brain deposits of amyloid-like aggregates formed by the C-terminal fragments of TDP-43 that contain the low complexity domain of the protein. Here, we report the cryo-EM structure of amyloid formed from the entire TDP-43 low complexity domain in vitro at pH 4. This structure reveals single protofilament fibrils containing a large (139-residue), tightly packed core. While the C-terminal part of this core region is largely planar and characterized by a small proportion of hydrophobic amino acids, the N-terminal region contains numerous hydrophobic residues and has a non-planar backbone conformation, resulting in rugged surfaces of fibril ends. The structural features found in these fibrils differ from those previously found for fibrils generated from short protein fragments. The present atomic model for TDP-43 LCD fibrils provides insight into potential structural perturbations caused by phosphorylation and disease-related mutations.

2020 ◽  
Author(s):  
Qiuye Li ◽  
W. Michael Babinchak ◽  
Witold K Surewicz

Amyotrophic lateral sclerosis and several other neurodegenerative diseases are associated with brain deposits of TDP-43 aggregates. Cryo-EM structure of amyloid formed from the entire TDP-43 low complexity domain reveals single protofilament fibrils containing a large (138-residue), tightly packed core with structural features that differ from those previously found for fibrils formed from short protein fragments. The atomic model provides insight into potential structural perturbations caused by phosphorylation and disease-related mutations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qin Gong ◽  
Kim Robinson ◽  
Chenrui Xu ◽  
Phuong Thao Huynh ◽  
Kelvin Han Chung Chong ◽  
...  

AbstractNod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells—a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1791
Author(s):  
Ana Bajc Česnik ◽  
Helena Motaln ◽  
Boris Rogelj

Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder, characterized by cytoplasmic inclusions of RNA-binding protein TDP-43. Despite decades of research and identification of more than 50 genes associated with amyotrophic lateral sclerosis (ALS), the cause of TDP-43 translocation from the nucleus and its aggregation in the cytoplasm still remains unknown. Our study addressed the impact of selected ALS-associated genes on TDP-43 aggregation behavior in wild-type and aggregation prone TDP-43 in vitro cell models. These were developed by deleting TDP-43 nuclear localization signal and stepwise shortening its low-complexity region. The SH-SY5Y cells were co-transfected with the constructs of aggregation-prone TDP-43 and wild-type or mutant ALS-associated genes hnRNPA1, MATR3, VCP or UBQLN2. The investigated genes displayed a unique impact on TDP-43 aggregation, generating distinct types of cytoplasmic inclusions, similar to those already described as resembling prion strains, which could represent the basis for neurodegenerative disease heterogeneity.


2012 ◽  
Vol 56 (6) ◽  
pp. 3207-3215 ◽  
Author(s):  
Katrin Ingram ◽  
William Ellis ◽  
Jennifer Keiser

ABSTRACTInteresting antischistosomal properties have been documented for the antimalarial mefloquine, a 4-quinolinemethanol. We evaluated the antischistosomal activities of nine mefloquine-related compounds belonging to the 4-pyridinemethanols, 9-phenanthrenmethanols, and 4-quinolinemethanols. Eight compounds revealed high activities againstSchistosoma mansoni in vitro, with two drugs (the 4-quinolinemethanols WR7573 and WR7930) characterized by significantly lower half-maximal inhibitory concentrations (IC50s) (2.7 and 3.5 μM, respectively) compared to mefloquine (11.4 μM). Mefloquine and WR7930 showed significantly decreased IC50s when incubated in the presence of hemoglobin. High worm burden reductions (WBR) were obtained with enpiroline (WBR, 82.7%; dosage, 200 mg/kg of body weight) and itsthreoisomers (+)-threo(WBR, 100%) and (−)-threo(WBR, 89%) and with WR7930 (WBR, 87%; dosage, 100 mg/kg) against adultS. mansoniin mice. Furthermore, excellentin vitroandin vivoantischistosomal activity was observed for two WR7930-related structures (WR29252 and WR7524). In addition, mefloquine (WBR, 81%), enpiroline (WBR, 77%), and WR7930 (WBR, 100%) showed high activities againstS. haematobiumharbored in mice following single oral doses of 200 mg/kg. These results provide a deeper insight into the structural features of the arylmethanols that rule antischistosomal activity. Further studies should be launched with enpiroline and WR7930.


2001 ◽  
Vol 52 (12) ◽  
pp. 1311 ◽  
Author(s):  
P. W. Gras ◽  
R. S. Anderssen ◽  
M. Keentok ◽  
F. Békés ◽  
R. Appels

Gluten protein functionality remains the basis of any understanding of the end-product quality of wheat flours. Information about this functionality has been obtained by both in vivo and in vitro studies. Recent advances include structure/function studies of deletion mutants and transformed genotypes, where the genes incorporated were both naturally occurring genes and genes which have been desired to provide specific structural features. The contributions of these specific changes in structure to the rheology of the resulting doughs allow insight into the underlying physical processes that determine dough and end-product properties.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Myungwoon Lee ◽  
Ujjayini Ghosh ◽  
Kent R. Thurber ◽  
Masato Kato ◽  
Robert Tycko

AbstractProtein domains without the usual distribution of amino acids, called low complexity (LC) domains, can be prone to self-assembly into amyloid-like fibrils. Self-assembly of LC domains that are nearly devoid of hydrophobic residues, such as the 214-residue LC domain of the RNA-binding protein FUS, is particularly intriguing from the biophysical perspective and is biomedically relevant due to its occurrence within neurons in amyotrophic lateral sclerosis, frontotemporal dementia, and other neurodegenerative diseases. We report a high-resolution molecular structural model for fibrils formed by the C-terminal half of the FUS LC domain (FUS-LC-C, residues 111-214), based on a density map with 2.62 Å resolution from cryo-electron microscopy (cryo-EM). In the FUS-LC-C fibril core, residues 112-150 adopt U-shaped conformations and form two subunits with in-register, parallel cross-β structures, arranged with quasi-21 symmetry. All-atom molecular dynamics simulations indicate that the FUS-LC-C fibril core is stabilized by a plethora of hydrogen bonds involving sidechains of Gln, Asn, Ser, and Tyr residues, both along and transverse to the fibril growth direction, including diverse sidechain-to-backbone, sidechain-to-sidechain, and sidechain-to-water interactions. Nuclear magnetic resonance measurements additionally show that portions of disordered residues 151-214 remain highly dynamic in FUS-LC-C fibrils and that fibrils formed by the N-terminal half of the FUS LC domain (FUS-LC-N, residues 2-108) have the same core structure as fibrils formed by the full-length LC domain. These results contribute to our understanding of the molecular structural basis for amyloid formation by FUS and by LC domains in general.


2016 ◽  
Vol 397 (9) ◽  
pp. 927-937 ◽  
Author(s):  
Edoardo Del Poggetto ◽  
Ludovica Gori ◽  
Fabrizio Chiti

Abstract Profilin-1 is a small protein involved in actin-mediated cytoskeleton rearrangement. Recently, mutations of profilin-1 have been associated with familial amyotrophic lateral sclerosis. It was previously reported that pathogenic mutations of profilin-1 increase the aggregation propensity of this protein, leaving its function unaffected. However, it is not clear if the mutations act by decreasing the conformational stability or by promoting structural perturbations of the folded state of this protein. In this work we have purified three novel profilin-1 mutants that were recently discovered and have investigated their conformational stability, structural features and aggregation behaviour in vitro. Analysis of the data obtained with the three novel variants, and a global statistical analysis with all profilin-1 mutants so far characterised, indicate significant correlations between aggregation propensity and structural perturbations of the folded state, rather than its conformational stability, in this group of mutants.


2017 ◽  
Vol 114 (42) ◽  
pp. 11115-11120 ◽  
Author(s):  
Binnu Gangadharan ◽  
Margaret S. Sunitha ◽  
Souhrid Mukherjee ◽  
Ritu Roy Chowdhury ◽  
Farah Haque ◽  
...  

Point mutations in genes encoding sarcomeric proteins are the leading cause of inherited primary cardiomyopathies. Among them are mutations in the TNNT2 gene that encodes cardiac troponin T (TnT). These mutations are clustered in the tropomyosin (Tm) binding region of TnT, TNT1 (residues 80–180). To understand the mechanistic changes caused by pathogenic mutations in the TNT1 region, six hypertrophic cardiomyopathy (HCM) and two dilated cardiomyopathy (DCM) mutants were studied by biochemical approaches. Binding assays in the absence and presence of actin revealed changes in the affinity of some, but not all, TnT mutants for Tm relative to WT TnT. HCM mutants were hypersensitive and DCM mutants were hyposensitive to Ca2+ in regulated actomyosin ATPase activities. To gain better insight into the disease mechanism, we modeled the structure of TNT1 and its interactions with Tm. The stability predictions made by the model correlated well with the affinity changes observed in vitro of TnT mutants for Tm. The changes in Ca2+ sensitivity showed a strong correlation with the changes in binding affinity. We suggest the primary reason by which these TNNT2 mutations between residues 92 and 144 cause cardiomyopathy is by changing the affinity of TnT for Tm within the TNT1 region.


Author(s):  
Gong Qin ◽  
Kim Robinson ◽  
Xu Chenrui ◽  
Zhang Jiawen ◽  
Boo Zhao Zhi ◽  
...  

AbstractNod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related NLR proteins, NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, the molecular mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to trigger the assembly of distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core composed of oligomerized CARD domains and the outer layer consisting of FIINDUPA rings. Biochemically, oligomerized NLRP1-CARD is sufficient to drive ASC speck formation in cultured human cells via filament formation-a process that is greatly enhanced by NLRP1-FIINDUPA, which forms ring-like oligomers in vitro. In addition, we report the cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments at 3.7 Å, which uncovers unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide unique structural insight into the mechanisms of activation for human NLRP1 and CARD8, uncovering an unexpected level of specificity in inflammasome signaling mediated by heterotypic CARD domain interactions.


2003 ◽  
Vol 31 (3) ◽  
pp. 427-439 ◽  
Author(s):  
R Betney ◽  
IJ McEwan

The intracellular androgen receptor (AR) is a ligand-activated transcription factor. Upon binding the steroids testosterone or dihydrotestosterone, the activated receptor translocates to the nucleus, binds to specific DNA response elements and interacts with the transcription machinery in order to regulate gene transcription. In the present study, we have described a highly conserved region (amino acids 224-258) within the AR AF-1 domain and have investigated the role of conserved bulky hydrophobic residues in gene regulation. Mutating pairs of residues (I229A/L236A; V240A/V242A; L251A/L254A) reduced transactivation activity by 25-40%. Mutating residues M244, L246 and V248 to alanines had a more dramatic affect on receptor activity, disrupting activity by at least 60%. The latter mutations also disrupted binding to the RNA polymerase-associated protein 74 subunit of the general transcription factor TFIIF. The protein conformation and stability of the mutant polypeptide in vitro was not significantly different from the wild type. None of the mutations tested disrupted binding of the AF-1 domain with the coactivator protein steroid receptor coactivator-1a. Thus we have concluded that conserved hydrophobic residues are important for receptor-dependent gene transcription and that M244, L246 and V248 are part of the binding interface for TFIIF.


Sign in / Sign up

Export Citation Format

Share Document