scholarly journals Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qin Gong ◽  
Kim Robinson ◽  
Chenrui Xu ◽  
Phuong Thao Huynh ◽  
Kelvin Han Chung Chong ◽  
...  

AbstractNod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells—a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.

Author(s):  
Gong Qin ◽  
Kim Robinson ◽  
Xu Chenrui ◽  
Zhang Jiawen ◽  
Boo Zhao Zhi ◽  
...  

AbstractNod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related NLR proteins, NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, the molecular mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to trigger the assembly of distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core composed of oligomerized CARD domains and the outer layer consisting of FIINDUPA rings. Biochemically, oligomerized NLRP1-CARD is sufficient to drive ASC speck formation in cultured human cells via filament formation-a process that is greatly enhanced by NLRP1-FIINDUPA, which forms ring-like oligomers in vitro. In addition, we report the cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments at 3.7 Å, which uncovers unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide unique structural insight into the mechanisms of activation for human NLRP1 and CARD8, uncovering an unexpected level of specificity in inflammasome signaling mediated by heterotypic CARD domain interactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiuye Li ◽  
W. Michael Babinchak ◽  
Witold K. Surewicz

AbstractAmyotrophic lateral sclerosis and several other neurodegenerative diseases are associated with brain deposits of amyloid-like aggregates formed by the C-terminal fragments of TDP-43 that contain the low complexity domain of the protein. Here, we report the cryo-EM structure of amyloid formed from the entire TDP-43 low complexity domain in vitro at pH 4. This structure reveals single protofilament fibrils containing a large (139-residue), tightly packed core. While the C-terminal part of this core region is largely planar and characterized by a small proportion of hydrophobic amino acids, the N-terminal region contains numerous hydrophobic residues and has a non-planar backbone conformation, resulting in rugged surfaces of fibril ends. The structural features found in these fibrils differ from those previously found for fibrils generated from short protein fragments. The present atomic model for TDP-43 LCD fibrils provides insight into potential structural perturbations caused by phosphorylation and disease-related mutations.


Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 119-133
Author(s):  
Janet Heasman ◽  
C. C. Wylie

Primordial germ cells (PGCs) of Xenopus laevis have been isolated from early embryos and kept alive in vitro, in order to study the structural basis of their motility, using the transmission and scanning electron microscope. The culture conditions used mimicked as closely as possible the in vivo environment of migrating PGCs, in that isolated PGCs were seeded onto monolayers of amphibian mesentery cells. In these conditions we have demonstrated that: (a) No significant differences were found between the morphology of PGCs in vitro and in vivo. (b) Structural features involved in PGC movement in vitro include (i) the presence of a filamentous substructure, (ii) filopodial and blunt cell processes, (iii) cell surface specializations. These features are also characteristic of migratory PGCs studied in vivo. (c) PGCs in vitro have powers of invasion similar to those of migrating PGCs in vivo. They occasionally become completely surrounded by cells of the monolayer and, in this situation, bear striking resemblance to PGCs moving between mesentery cells to the site of the developing gonad in stage-44 tadpoles. We conclude that as far as it is possible to assess, the behaviour of isolated PGCs in these in vitro conditions mimics their activities in vivo. This allows us to study the ultrastructural basis of their migration.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Tamás Molnár ◽  
Anett Mázló ◽  
Vera Tslaf ◽  
Attila Gábor Szöllősi ◽  
Gabriella Emri ◽  
...  

Abstract Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.


2012 ◽  
Vol 56 (6) ◽  
pp. 3207-3215 ◽  
Author(s):  
Katrin Ingram ◽  
William Ellis ◽  
Jennifer Keiser

ABSTRACTInteresting antischistosomal properties have been documented for the antimalarial mefloquine, a 4-quinolinemethanol. We evaluated the antischistosomal activities of nine mefloquine-related compounds belonging to the 4-pyridinemethanols, 9-phenanthrenmethanols, and 4-quinolinemethanols. Eight compounds revealed high activities againstSchistosoma mansoni in vitro, with two drugs (the 4-quinolinemethanols WR7573 and WR7930) characterized by significantly lower half-maximal inhibitory concentrations (IC50s) (2.7 and 3.5 μM, respectively) compared to mefloquine (11.4 μM). Mefloquine and WR7930 showed significantly decreased IC50s when incubated in the presence of hemoglobin. High worm burden reductions (WBR) were obtained with enpiroline (WBR, 82.7%; dosage, 200 mg/kg of body weight) and itsthreoisomers (+)-threo(WBR, 100%) and (−)-threo(WBR, 89%) and with WR7930 (WBR, 87%; dosage, 100 mg/kg) against adultS. mansoniin mice. Furthermore, excellentin vitroandin vivoantischistosomal activity was observed for two WR7930-related structures (WR29252 and WR7524). In addition, mefloquine (WBR, 81%), enpiroline (WBR, 77%), and WR7930 (WBR, 100%) showed high activities againstS. haematobiumharbored in mice following single oral doses of 200 mg/kg. These results provide a deeper insight into the structural features of the arylmethanols that rule antischistosomal activity. Further studies should be launched with enpiroline and WR7930.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hwan-Jin Hwang ◽  
Joo Won Kim ◽  
Hye Soo Chung ◽  
Ji A. Seo ◽  
Sin Gon Kim ◽  
...  

Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.


2021 ◽  
Author(s):  
Anass Chiki ◽  
Zhidian Zhang ◽  
Kolla Rajasekhar ◽  
Luciano A. Abriata ◽  
Iman Rostami ◽  
...  

AbstractPost-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins in vitro and in various models of Huntington’s disease. Our group’s previous studies suggested that the Nt17 PTM code is a combinatorial code that involves a complex interplay between different PTMs. Here, we expand on these studies by investigating the effect of methionine 8 oxidation (oxM8) and crosstalk between this PTM and either lysine 6 acetylation (AcK6) or threonine 3 phosphorylation (pT3) on the aggregation of mutant Httex1. We show that M8 oxidation delays but does not inhibit the aggregation and has no effect on the final morphologies of mutant Httex1 aggregates. This delay in aggregation kinetics could be attributed to the transient accumulation of oligomeric aggregates, which disappear upon the formation of Httex1 oxM8 fibrils. Interestingly, the presence of both oxM8 and AcK6 resulted in dramatic inhibition of Httex1 fibrillization, whereas the presence of oxM8 did not influence the aggregation inhibitory effect of pT3. To gain insight into the structural basis underlying these proteins’ aggregation properties, we investigated the impact of each PTM and the combination of these PTMs on the conformational properties of the Nt17 peptide by circular dichroism spectroscopy and molecular dynamics simulation. These studies show that M8 oxidation decreases the helicity of the Nt17 in the presence or absence of PTMs and provides novel insight into the structural basis underlying the effects of different PTMs on mutant Httex1 aggregation. PTMs that lower the mutant Httex1 aggregation rate (oxM8, AcK6/oxM8, pT3, pT3/oxM8, and phosphorylation at Serine 13) result in stabilization and increased population of a short N-terminal helix (first eight residues) in Nt17 or decreased abundance of other helical forms, including long helix and short C-terminal helix. PTMs that did not alter the aggregation of mutant Httex1 exhibit a similar distribution of helical conformation as the unmodified peptides. These results show that the relative abundance of N- vs. C-terminal helical conformations and long helices, rather than the overall helicity of Nt17, better explains the effect of different Nt17 PTMs on mutant Httex1; thus, explaining the lack of correlation between the effect of PTMs on the overall helicity of Nt17 and mutant Httex1 aggregation in vitro. Taken together, our results provide novel structural insight into the differential effects of single PTMs and crosstalk between different PTMs in regulating mutant Httex1 aggregation.TOC Figure


2021 ◽  
Vol 22 (23) ◽  
pp. 12631
Author(s):  
Xiaoling He ◽  
Yao Nie ◽  
Heng Zhou ◽  
Rui Hu ◽  
Ying Li ◽  
...  

TGIF1 is a transcriptional repressor playing crucial roles in human development and function and is associated with holoprosencephaly and various cancers. TGIF1-directed transcriptional repression of specific genes depends on the recruitment of corepressor SIN3A. However, to date, the exact region of TGIF1 binding to SIN3A was not clear, and the structural basis for the binding was unknown. Here, we demonstrate that TGIF1 utilizes a C-terminal domain (termed as SIN3A-interacting domain, SID) to bind with SIN3A PAH2. The TGIF1 SID adopts a disordered structure at the apo state but forms an amphipathic helix binding into the hydrophobic cleft of SIN3A PAH2 through the nonpolar side at the holo state. Residues F379, L382 and V383 of TGIF1 buried in the hydrophobic core of the complex are critical for the binding. Moreover, homodimerization of TGIF1 through the SID and key residues of F379, L382 and V383 was evidenced, which suggests a dual role of TGIF1 SID and a correlation between dimerization and SIN3A-PAH2 binding. This study provides a structural insight into the binding of TGIF1 with SIN3A, improves the knowledge of the structure–function relationship of TGIF1 and its homologs and will help in recognizing an undiscovered SIN3A-PAH2 binder and developing a peptide inhibitor for cancer treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anass Chiki ◽  
Zhidian Zhang ◽  
Kolla Rajasekhar ◽  
Luciano A. Abriata ◽  
Iman Rostami ◽  
...  

Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins in vitro and in various models of Huntington’s disease. Here, we expand on these studies by investigating the effect of methionine eight oxidation (oxM8) and its crosstalk with lysine 6 acetylation (AcK6) or threonine 3 phosphorylation (pT3) on the aggregation of mutant Httex1 (mHttex1). We show that M8 oxidation delays but does not inhibit the aggregation and has no effect on the final morphologies of mHttex1aggregates. The presence of both oxM8 and AcK6 resulted in dramatic inhibition of Httex1 fibrillization. Circular dichroism spectroscopy and molecular dynamics simulation studies show that PTMs that lower the mHttex1 aggregation rate (oxM8, AcK6/oxM8, pT3, pT3/oxM8, and pS13) result in increased population of a short N-terminal helix (first eight residues) in Nt17 or decreased abundance of other helical forms, including long helix and short C-terminal helix. PTMs that did not alter the aggregation rate (AcK6) of mHttex1 exhibit a similar distribution of helical conformation as the unmodified peptides. These results show that the relative abundance of N- vs. C-terminal helical conformations and long helices, rather than the overall helicity of Nt17, better explains the effect of different Nt17 PTMs on mHttex1; thus, explaining the lack of correlation between the effect of PTMs on the overall helicity of Nt17 and mHttex1 aggregation in vitro. Taken together, our results provide novel structural insight into the differential effects of single PTMs and crosstalk between different PTMs in regulating mHttex1 aggregation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rina Du ◽  
Pengwei Zhao ◽  
Shikui Wu ◽  
Yaoxing Gao ◽  
Rina Wu ◽  
...  

Sendeng-4 is a traditional Chinese medicine that has been successfully applied to anti-inflammatory diseases in clinical practice. Monomers within Sendeng-4 showed promising antitumor activity against lung cancer, colon cancer, and cutaneous cancer. However, potency of Sendeng-4 in melanoma has not been explored. This study aims to explore the potential application of Sendeng-4 in melanoma treatment. In the present study, we systemically investigate the possibility of Sendeng-4 for treatment of melanoma cancer in vitro by proliferation assay, colony formation, flow cell cytometry, RNA-seq, western blot, and fluorescence-based assay. Our data demonstrated that Sendeng-4 suppresses the proliferation and colony formation capacity of melanoma cells and induces cell cycle block at G2/M phase and eventually cell death. Mechanistically, transcriptome sequencing demonstrates that the PI3K-AKT pathway was significantly inactivated upon Sendeng-4 exposure, which was confirmed by western blot showing decreased phosphorylation of AKT. In addition, decreased BCL-2 expression and increased BAX expression were observed, suggesting programmed cell death via apoptosis. Moreover, LC3-II production as well as autophagosomes formation was observed as demonstrated by western blot and immunofluorescence, indicating elevated autophagy network by Sendeng-4 stimulation. Collectively, we concluded that Sendeng-4 might be used as an anticancer drug for melanoma.


Sign in / Sign up

Export Citation Format

Share Document