scholarly journals Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
He Li ◽  
Richard J. Arculus ◽  
Osamu Ishizuka ◽  
Rosemary Hickey-Vargas ◽  
Gene M. Yogodzinski ◽  
...  

AbstractThe magmatic character of early subduction zone and arc development is unlike mature systems. Low-Ti-K tholeiitic basalts and boninites dominate the early Izu-Bonin-Mariana (IBM) system. Basalts recovered from the Amami Sankaku Basin (ASB), underlying and located west of the IBM’s oldest remnant arc, erupted at ~49 Ma. This was 3 million years after subduction inception (51-52 Ma) represented by forearc basalt (FAB), at the tipping point between FAB-boninite and typical arc magmatism. We show ASB basalts are low-Ti-K, aluminous spinel-bearing tholeiites, distinct compared to mid-ocean ridge (MOR), backarc basin, island arc or ocean island basalts. Their upper mantle source was hot, reduced, refractory peridotite, indicating prior melt extraction. ASB basalts transferred rapidly from pressures (~0.7-2 GPa) at the plagioclase-spinel peridotite facies boundary to the surface. Vestiges of a polybaric-polythermal mineralogy are preserved in this basalt, and were not obliterated during persistent recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.

2020 ◽  
Author(s):  
He Li ◽  
Richard Arculus ◽  
Osamu Ishizuka ◽  
Rosemary Hickey-Vargas ◽  
Gene Yogodzinski ◽  
...  

Abstract The character of magmatism associated with the early stages of subduction zone and island arc development is unlike that of mature systems, being dominated in the Izu-Bonon-Mariana (IBM) case by low-Ti-K tholeiitic basalts and boninites. Basalts recovered by coring the basement of the Amami Sankaku Basin (ASB), located west of the oldest remnant arc of the IBM system (Kyushu-Palau Ridge; KPR), were erupted at ~49 Ma, about 3 million years after subduction inception. The chain of stratovolcanoes defined by the KPR is superimposed on this basement. The basalts were sourced from upper mantle similar to that tapped following subduction inception, and represented by forearc basalt (FAB) dated at ~52-51 Ma. The mantle sources of the ASB basalt basement were more depleted by prior melt extraction than those involved in the vast majority of mid-ocean ridge (MOR) basalt generation. The ASB basalts are low-Ti-K, aluminous spinel-olivine-plagioclase-clinopyroxene-bearing tholeiites. We show this primary mineralogy is collectively distinct compared to basalts of MOR, backarc basins of the Philippine Sea Plate, forearc, or mature island arcs. In combination with bulk compositional (major and trace element abundances plus radiogenic isotope characteristics) data for the ASB basalts, we infer the upper mantle involved was hot (~1400oC), reduced, and refractory peridotite. For a few million years following subduction initiation, a broad region of mantle upwelling accompanied by partial melting prevailed. The ASB basalts were transferred rapidly from moderate pressures (1-2 GPa), preserving a mineralogy established at sub-crustal conditions, and experienced little of recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


2012 ◽  
Vol 150 (3) ◽  
pp. 497-508 ◽  
Author(s):  
GEORGE S.-K. MA ◽  
JOHN MALPAS ◽  
JIAN-FENG GAO ◽  
KUO-LUNG WANG ◽  
LIANG QI ◽  
...  

AbstractEarly–Middle Miocene intraplate basalts from the Aleppo Plateau, NW Syria have been analysed for their platinum-group elements (PGEs). They contain extremely low PGE abundances, comparable with most alkali basalts, such as those from Hawaii, and mid-ocean ridge basalts. The low abundances, together with high Pd/Ir, Pt/Ir, Ni/Ir, Cu/Pd, Y/Pt and Cu/Zr are consistent with sulphide fractionation, which likely occurred during partial melting and melt extraction within the mantle. Some of the basalts are too depleted in PGEs to be explained solely by partial melting of a primitive mantle-like source. Such ultra-low PGE abundances, however, are possible if the source contains some mafic lithologies. Many of the basalts also exhibit suprachondritic Pd/Pt ratios of up to an order of magnitude higher than primitive mantle and chondrite, an increase too high to be attributable to fractionation of spinel and silicate minerals alone. The elevated Pd/Pt, associated with a decrease in Pt but not Ir and Ru, are also inconsistent with removal of Pt-bearing PGE minerals or alloys, which should have concurrently lowered Pt, Ir and Ru. In contrast, melting of a metasomatized source comprising sulphides whose Pt and to a lesser extent Rh were selectively mobilized through interaction with silicate melts, may provide an explanation.


1999 ◽  
Vol 36 (6) ◽  
pp. 1021-1031 ◽  
Author(s):  
Brian Cousens ◽  
Jarda Dostal ◽  
T S Hamilton

Three seamounts close to the south end of the Pratt-Welker Seamount Chain, Gulf of Alaska, have been sampled to test whether or not mantle plume-related volcanism extends south of Bowie Seamount. Lavas recovered from Oshawa, Drifters, and Graham seamounts are weathered, Mn-encrusted pillow lavas and sheet-flow fragments, commonly with glassy rims. The glasses and holocrystalline rocks are tholeiitic basalts, with light rare earth element depleted to flat primitive mantle normalized incompatible element patterns and radiogenic isotope compositions within the ranges of mid-ocean ridge and near-ridge seamount basalts from the Explorer and northern Juan de Fuca ridges. Chemically, the seamount lavas strongly resemble older, "shield-phase" tholeiitic rocks dredged from the flanks of southern Pratt-Welker seamounts, but are distinct from the younger alkaline intraplate lavas that cap Pratt-Welker edifices. The weathered, encrusted basalts were most likely erupted in a near-ridge environment, adjacent to Explorer Ridge, between 11 and 14 Ma. No evidence of plume-related activity is found in this area. Compared with northeast Pacific mid-ocean ridge and alkaline intraplate basalts, Graham seamount lavas have anomalously high 206Pb/204Pb, which does not appear to be a function of sea-floor alteration, magma contamination, or mixing between previously identified mantle components. All near-ridge seamounts in the northeast Pacific exhibit isotopic heterogeneity that does not correlate with major or trace element composition, suggesting that the mantle sources of all near-ridge seamounts have been variably depleted by prior, but recent melting events.


A systematic survey of rare-earth (r.e.) abundances in submarine tholeiitic basalts along mid-oceanic ridges has been made by neutron activation analysis. The r.e. fractionation patterns are remarkably uniform along each mid-oceanic ridge and from one ridge to another (Juan de Fuca Ridge, East Pacific and Chile Rise, Pacific-Antarctic, Mid-Indian and Carlsberg Ridge, Gulf of Aden, Red Sea Trough and Reykjanes Ridge). The patterns are all depleted in light r.e. except for three samples (Gulf of Aden and Mid-Indian Ridge) which are unfractionated relative to chondrites. They contrast markedly with tholeiitic plateau basalt which are shown to be related to the early volcanic phases associated with continental drift. Tholeiitic plateau basalts are light r.e. enriched as are most continental rocks. Mid-ocean ridge basalts are also distinguishable from spatially related oceanic shield volcanoes of tholeiitic composition (Red Sea Trough-Jebel Teir Is., East Pacific Rise-Culpepper Island). Thus on a r.e. basis there are tholeiites within tholeiites. The r.e. difference between mid-ocean ridge tholeiites and tholeiitic plateau basalts can be related to distinct thermal and tectonic régimes and consequently magmatic modes and rates of intrusions from the low velocity layer in the upper mantle. The difference between continental and oceanic volcanism appears to be triggered by: (1) presence or absence of a moving continental lithosphere over the low velocity layer, and (2) whether or not major rifts tap the low velocity layer through the lithosphere. Fractional crystallization during ascent of melts before eruption at the ridge crest does not affect appreciably the relative r.e. patterns. R.e. in mid-ocean ridge basalts appear to intrinsically reflect their distribution in the upper mantle source, i.e. the low velocity layer. Based on secondary order r.e. variation of mid-ocean ridge basalts: (1) If fractional crystallization is invoked for the small r.e. variations, up to approximately 50 % extraction of olivine and Ca-poor orthopyroxene in various combinations can be tolerated. However, only limited amount of plagioclase or Ca-rich clinopyroxene can be extracted, the former because of its effect on the abundance of Eu abundance and the latter because of its effect on the [La/Sm] e.f. ratio, alternatively. (2) If partial melting during ascent is invoked, and a minimum of 10% melting is assumed, the permissible degree of melting of originally a lherzolite upper mantle may vary between 10 and 30% . It is not possible to establish readily to what extent these two processes have been operative as they cannot be distinguished on the basis of r.e. data only. However, there is evidence indicating that both have been operative and are responsible for the small r.e. variations observed in mid-ocean ridge basalts. An attempt to correlate second order r.e. variations along or across mid-oceanic ridges with spreading rate, age, or distance from ridge crests has been made but the results are inconclusive. No r.e. secular variation of the oceanic crust is apparent. R.e. average ridge to ridge variations are attributed to small lateral inhomogeneities of the source of basalts in the low velocity layer, and to a certain extent, to its past history. The remarkable r.e. uniformity of mid-oceanic ridge tholeiites requires a unique and simple volcanic process to be operative. It calls for upward migration of melt or slush from a relatively homogeneous source in the mantle—the low velocity layer, followed by further partial melting during ascent. The model, although consistent with geophysics, may have to be reconciled with some evidence from experimental petrology. Models for r.e. composition of the upper mantle source of ridge basalt, formation of layers 2 and 3, and the moho-discontinuity, are also presented.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 465 ◽  
Author(s):  
Kai Sun ◽  
Tao Wu ◽  
Xuesong Liu ◽  
Xue-Gang Chen ◽  
Chun-Feng Li

Mid-ocean ridge basalts (MORB) in the South China Sea (SCS) record deep crust-mantle processes during seafloor spreading. We conducted a petrological and geochemical study on the MORBs obtained from the southwest sub-basin of the SCS at site U1433 and U1434 of the International Ocean Discovery Program (IODP) Expedition 349. Results show that MORBs at IODP site U1433 and U1434 are unaffected by seawater alteration, and all U1433 and the bulk of U1434 rocks belong to the sub-alkaline low-potassium tholeiitic basalt series. Samples collected from site U1433 and U1434 are enriched mid-ocean ridge basalts (E-MORBs), and the U1434 basalts are more enriched in incompatible elements than the U1433 samples. The SCS MORBs have mainly undergone the fractional crystallization of olivine, accompanied by the relatively weak fractional crystallization of plagioclase and clinopyroxene during magma evolution. The magma of both sites might be mainly produced by the high-degree partial melting of spinel peridotite at low pressures. The degree of partial melting at site U1434 was lower than at U1433, ascribed to the relatively lower spreading rate. The magmatic source of the southwest sub-basin basalts may be contaminated by lower continental crust and contributed by recycled oceanic crust component during the opening of the SCS.


1987 ◽  
Vol 24 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Keith Bell ◽  
John Blenkinsop ◽  
S. T. Kwon ◽  
G. R. Tilton ◽  
R. P. Sage

Rb–Sr and U–Pb data from the Borden complex of northern Ontario, a carbonatite associated with the Kapuskasing Structural Zone, indicate a mid-Proterozoic age. A 207Pb/206Pb age of 1872 ± 13 Ma is interpreted as the emplacement age of this body, grouping it with other ca. 1900 Ma complexes that are the oldest known carbonatites associated with the Kapuskasing structure. A 206Pb–238U age of 1894 ± 29 Ma agrees with the Pb–Pb age but has a high mean square of weighted deviates (MSWD) of 42. A Rb–Sr apatite–carbonate–mica whole-rock isochron date of 1807 ± 13 Ma probably indicates later resetting of the Rb–Sr system.An εSr(T) value of −6.2 ± 0.5 (87Sr/86Sr = 0.70184 ± 0.00003) and an εNd(T) value of +2.8 ± 0.4 for Borden indicate derivation of the Sr and Nd from a source with a time-integrated depletion in the large-ion lithophile (LIL) elements. These closely resemble the ε values for Sr and Nd from the Cargill and Spanish River complexes, two other 1900 Ma plutons. The estimated initial 207Pb/204Pb and 206Pb/204Pb ratios from Borden calcites plot significantly below growth curves for average continental crust in isotope correlation diagrams, a pattern similar to those found in mid-ocean ridge basalts (MORB) and most ocean-island volcanic rocks, again suggesting a source depleted in LIL elements. The combined Nd and Sr, and probably Pb, data strongly favour a mantle origin for the Borden complex with little or no crustal contamination and support the model of Bell et al. that many carbonatites intruded into the Canadian Shield were derived from an ancient, LIL-depleted subcontinental upper mantle.


2020 ◽  
Vol 117 (25) ◽  
pp. 13997-14004 ◽  
Author(s):  
Michael W. Broadley ◽  
Peter H. Barry ◽  
David V. Bekaert ◽  
David J. Byrne ◽  
Antonio Caracausi ◽  
...  

Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.


Sign in / Sign up

Export Citation Format

Share Document