scholarly journals Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Colin Kern ◽  
Ying Wang ◽  
Xiaoqin Xu ◽  
Zhangyuan Pan ◽  
Michelle Halstead ◽  
...  

AbstractGene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.

2017 ◽  
Vol 114 (25) ◽  
pp. E4914-E4923 ◽  
Author(s):  
Zhana Duren ◽  
Xi Chen ◽  
Rui Jiang ◽  
Yong Wang ◽  
Wing Hung Wong

The rapid increase of genome-wide datasets on gene expression, chromatin states, and transcription factor (TF) binding locations offers an exciting opportunity to interpret the information encoded in genomes and epigenomes. This task can be challenging as it requires joint modeling of context-specific activation of cis-regulatory elements (REs) and the effects on transcription of associated regulatory factors. To meet this challenge, we propose a statistical approach based on paired expression and chromatin accessibility (PECA) data across diverse cellular contexts. In our approach, we model (i) the localization to REs of chromatin regulators (CRs) based on their interaction with sequence-specific TFs, (ii) the activation of REs due to CRs that are localized to them, and (iii) the effect of TFs bound to activated REs on the transcription of target genes (TGs). The transcriptional regulatory network inferred by PECA provides a detailed view of how trans- and cis-regulatory elements work together to affect gene expression in a context-specific manner. We illustrate the feasibility of this approach by analyzing paired expression and accessibility data from the mouse Encyclopedia of DNA Elements (ENCODE) and explore various applications of the resulting model.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pâmela A. Alexandre ◽  
Marina Naval-Sánchez ◽  
Moira Menzies ◽  
Loan T. Nguyen ◽  
Laercio R. Porto-Neto ◽  
...  

Abstract Background Spatiotemporal changes in the chromatin accessibility landscape are essential to cell differentiation, development, health, and disease. The quest of identifying regulatory elements in open chromatin regions across different tissues and developmental stages is led by large international collaborative efforts mostly focusing on model organisms, such as ENCODE. Recently, the Functional Annotation of Animal Genomes (FAANG) has been established to unravel the regulatory elements in non-model organisms, including cattle. Now, we can transition from prediction to validation by experimentally identifying the regulatory elements in tropical indicine cattle. The identification of regulatory elements, their annotation and comparison with the taurine counterpart, holds high promise to link regulatory regions to adaptability traits and improve animal productivity and welfare. Results We generate open chromatin profiles for liver, muscle, and hypothalamus of indicine cattle through ATAC-seq. Using robust methods for motif discovery, motif enrichment and transcription factor binding sites, we identify potential master regulators of the epigenomic profile in these three tissues, namely HNF4, MEF2, and SOX factors, respectively. Integration with transcriptomic data allows us to confirm some of their target genes. Finally, by comparing our results with Bos taurus data we identify potential indicine-specific open chromatin regions and overlaps with indicine selective sweeps. Conclusions Our findings provide insights into the identification and analysis of regulatory elements in non-model organisms, the evolution of regulatory elements within two cattle subspecies as well as having an immediate impact on the animal genetics community in particular for a relevant productive species such as tropical cattle.


2020 ◽  
Author(s):  
Nadezda A. Fursova ◽  
Anne H. Turberfield ◽  
Neil P. Blackledge ◽  
Emma L. Findlater ◽  
Anna Lastuvkova ◽  
...  

AbstractHistone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications that are found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A mono-ubiquitylation (H2AK119ub1) which is enriched at Polycomb-repressed gene promoters, but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we discover that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 represses gene expression by counteracting transcription initiation from gene regulatory elements, causing reductions in transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes leading to their derepression, therefore explaining the original genetic characterisation of BAP1 as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification, without the need for elaborate gene-specific targeting mechanisms.


2020 ◽  
Author(s):  
Hazel Quinn ◽  
Elle Koren ◽  
Regina Vogel ◽  
Oliver Popp ◽  
Philipp Mertins ◽  
...  

AbstractTargeting cancer stem cells (CSCs) can serve as an effective approach toward limiting resistance to therapies and the development of metastases in many forms of cancer. While basal breast cancers encompass cells with CSC features, rational therapies remain poorly established. Here, we show that receptor tyrosine kinase Met signalling promotes the activity of the Hippo component YAP in basal breast cancer. Further analysis revealed enhanced YAP activity within the CSC population. Using both genetic and pharmaceutical approaches, we show that interfering with YAP activity delays basal cancer formation, prevents luminal to basal trans-differentiation and reduces CSC survival. Gene expression analysis of YAP knock-out mammary glands revealed a strong decrease in β-catenin target genes in basal breast cancer, suggesting that YAP is required for nuclear β-catenin activity. Mechanistically, we find that nuclear YAP interacts and overlaps with β-catenin and TEAD4 at common gene regulatory elements. Analysis of proteomic data from primary breast cancer patients identified a significant upregulation of the YAP activity signature in basal compared to other breast cancers, suggesting that YAP activity is limited to basal types. Our findings demonstrate that in basal breast cancers, β-catenin activity is dependent on YAP signalling and controls the CSC program. These findings suggest that targeting the YAP/TEAD4/β-catenin complex offers a potential therapeutic strategy for eradicating CSCs in basal (triple-negative) breast cancers.


2020 ◽  
Author(s):  
Matthew C. Pahl ◽  
Claudia A. Doege ◽  
Kenyaita M. Hodge ◽  
Sheridan H. Littleton ◽  
Michelle E. Leonard ◽  
...  

SummaryThe hypothalamus regulates metabolic homeostasis by influencing behavior, energy utilization and endocrine systems. Given its role governing health-relevant traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function should yield insights into these traits and diseases. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generated a chromatin architecture atlas of an established embryonic stem cell (ESC)-derived hypothalamic-like neuron (HN) model across three stages of in vitro differentiation. We profiled accessible chromatin and identified physically interacting contacts between gene promoters and their putative cis-regulatory elements (cREs) to characterize changes in the gene regulatory landscape during hypothalamic differentiation. Next, we integrated these data with GWAS loci for multiple traits and diseases enriched for heritability in these cells, identifying candidate effector genes and cREs impacting transcription factor binding. Our results reveal common target genes for these traits, potentially identifying core hypothalamic developmental pathways. Our atlas will enable future efforts to determine precise mechanisms underlying hypothalamic development with respect to specific disease pathogenesis.


2021 ◽  
Author(s):  
Margaux Louise Anna Hujoel ◽  
Maxwell A Sherman ◽  
Alison R Barton ◽  
Ronen E Mukamel ◽  
Vijay G. Sankaran ◽  
...  

The human genome contains hundreds of thousands of regions exhibiting copy number variation (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs (spanning tens of kilobases) have been ascertainable from the SNP-array data generated by large biobanks. We developed a new computational approach that leverages abundant haplotype-sharing in biobank cohorts to more sensitively detect CNVs co-inherited within extended SNP haplotypes. Applied to UK Biobank, this approach achieved 6-fold increased CNV detection sensitivity compared to previous analyses, accounting for approximately half of all rare gene inactivation events produced by genomic structural variation. This extensive CNV call set enabled the most comprehensive analysis to date of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (P < 5 x 10-8) - involving 97 loci - that rigorous statistical fine-mapping analyses indicated were likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling new insights into dosage-sensitivity of these genes and implicating several novel gene-trait relationships. CNVs at several loci created extended allelic series including deletions or duplications of distal enhancers that associated with much stronger phenotypic effects than SNPs within these regulatory elements. These results demonstrate the ability of haplotype-informed analysis to empower structural variant detection and provide insights into the genetic basis of human complex traits.


2019 ◽  
Author(s):  
Akihiro Kuno ◽  
Satoru Takahashi

Abstract Background Transcription factors (TF) regulate gene expression by binding to specific DNA elements called DNA-binding motifs, or motifs. The motifs at a certain genomic locus can offer clues for predicting TFs that control target genes. However, since motifs are short nucleotide sequences and many TFs share similar motifs, they are distributed across the whole genome, making it difficult to investigate candidate functional DNA elements. Because previous studies have reported that TF binding sites are highly conserved among mammals, we focused on the conserved motif loci between humans and mice to identify functional DNA elements. Results Our results showed that conserved motif loci overlapping considerably with TF binding sites at both promoter and intergenic regions compared to nonconserved motif loci. In addition, conserved motif loci were significantly enriched in enhancer regions and enabled us to predict GATA4 binding to the heart-specific enhancer. Moreover, the integration of ChIP-seq and RNA-seq glioblastoma data revealed that genes with ASCL1 binding at the conserved ASCL1-related motifs were associated with NOTCH signaling, which is a critical pathway in glioblastoma. Conclusions These results suggest that conserved motif loci can reflect gene regulatory elements and can be utilized to predict candidate TFs that regulate genes of interest. The conserved motif data are publicly available at https://osf.io/jhfnb/?view_only=1c82bc9963ee45b799be42512abb08d1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew C. Pahl ◽  
Claudia A. Doege ◽  
Kenyaita M. Hodge ◽  
Sheridan H. Littleton ◽  
Michelle E. Leonard ◽  
...  

AbstractThe hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1175
Author(s):  
Amarni L. Thomas ◽  
Judith Marsman ◽  
Jisha Antony ◽  
William Schierding ◽  
Justin M. O’Sullivan ◽  
...  

The RUNX1/AML1 gene encodes a developmental transcription factor that is an important regulator of haematopoiesis in vertebrates. Genetic disruptions to the RUNX1 gene are frequently associated with acute myeloid leukaemia. Gene regulatory elements (REs), such as enhancers located in non-coding DNA, are likely to be important for Runx1 transcription. Non-coding elements that modulate Runx1 expression have been investigated over several decades, but how and when these REs function remains poorly understood. Here we used bioinformatic methods and functional data to characterise the regulatory landscape of vertebrate Runx1. We identified REs that are conserved between human and mouse, many of which produce enhancer RNAs in diverse tissues. Genome-wide association studies detected single nucleotide polymorphisms in REs, some of which correlate with gene expression quantitative trait loci in tissues in which the RE is active. Our analyses also suggest that REs can be variant in haematological malignancies. In summary, our analysis identifies features of the RUNX1 regulatory landscape that are likely to be important for the regulation of this gene in normal and malignant haematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document