scholarly journals Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sylvan C. Baca ◽  
David Y. Takeda ◽  
Ji-Heui Seo ◽  
Justin Hwang ◽  
Sheng Yu Ku ◽  
...  

AbstractLineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling.

2020 ◽  
Author(s):  
Sylvan C. Baca ◽  
David Y. Takeda ◽  
Ji-Heui Seo ◽  
Justin Hwang ◽  
Sheng Yu Ku ◽  
...  

AbstractLineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer1,2. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. To investigate the epigenomic basis of this resistance mechanism, we profiled histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identified a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium3,4, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying novel cancer dependencies through epigenomic profiling.


2021 ◽  
Author(s):  
Alexandre Gaspar-Maia ◽  
Wazim Mohammed Ismail ◽  
Amelia Mazzone ◽  
Jagneet Kaur ◽  
Stephanie Safgren ◽  
...  

Abstract Considerable efforts have been made to characterize active enhancer elements, which can be annotated by accessible chromatin and H3 lysine 27 acetylation (H3K27ac). However, apart from poised enhancers that are observed in early stages of development and putative silencers, the functional significance of cis-regulatory elements lacking H3K27ac is poorly understood. Here we show that macroH2A histone variants mark a subset of enhancers in normal and cancer cells, which we coined ‘macroH2A-Bound Enhancers’, that negatively modulate enhancer activity. We find macroH2A variants enriched at enhancer elements that are devoid of H3K27ac in a cell type-specific manner, indicating a role for macroH2A at inactive enhancers to maintain cell identity. In following, reactivation of macro-bound enhancers is associated with oncogenic programs in breast cancer and its repressive role is correlated with the activity of macroH2A2 as a negative regulator of BRD4 chromatin occupancy. Finally, through single cell epigenomic profiling, we show that the loss of macroH2A2 leads to increased cellular heterogeneity that may help to explain the role of macroH2A variants in defining oncogenic transcriptional dependencies.


2014 ◽  
Author(s):  
Jimin Song ◽  
Kevin C Chen

Recently, a wealth of epigenomic data has been generated by biochemical assays and next-generation sequencing (NGS) technologies. In particular, histone modification data generated by the ENCODE project and other large-scale projects show specific patterns associated with regulatory elements in the human genome.It is important to build a unified statistical model to decipher the patterns of multiple histone modifications in a cell type to annotate chromatin states such as transcription start sites, enhancers and transcribed regions rather than to map histone modifications individually to regulatory elements. Several genome-wide statistical models have been developed based on hidden Markov models (HMMs). These methods typically use the Expectation-Maximization (EM) algorithm to estimate the parameters of the model.Here we used spectral learning, a state-of-the-art parameter estimation algorithm in machine learning.We found that spectral learning plus a few (up to five) iterations of local optimization of the likelihood outperforms the standard EM algorithm.We also evaluated our software implementation called Spectacle on independent biological datasets and found that Spectacle annotated experimentally defined functional elements such as enhancers significantly better than a previous state-of-the-art method. Spectacle can be downloaded from https://github.com/jiminsong/Spectacle .


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingpeng Yao ◽  
Ying Yang ◽  
Wenhui Guo ◽  
Lifan Xu ◽  
Menghao You ◽  
...  

AbstractT follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3′ UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3′ UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Henriette Miko ◽  
Yunjiang Qiu ◽  
Bjoern Gaertner ◽  
Maike Sander ◽  
Uwe Ohler

Abstract Background Co-localized combinations of histone modifications (“chromatin states”) have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points (“chromatin state trajectories”) have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs. Results We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex. Conclusions TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Roosa Kaarijärvi ◽  
Heidi Kaljunen ◽  
Kirsi Ketola

Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.


Sign in / Sign up

Export Citation Format

Share Document