scholarly journals Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuko Makita ◽  
Shigekatsu Suzuki ◽  
Keiji Fushimi ◽  
Setsuko Shimada ◽  
Aya Suehisa ◽  
...  

AbstractPhotoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.

2020 ◽  
Author(s):  
Yuko Makita ◽  
Shigekatsu Suzuki ◽  
Keiji Fushimi ◽  
Setsuko Shimada ◽  
Aya Suehisa ◽  
...  

Abstract Photoreceptors are conserved in green algae to land plants, and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. A search for blue-light photoreceptors in the marine metagenome uncovered a novel chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Its complete genome revealed that P. provasolii facilitates light adaptation mechanisms via pheophorbide a oxygenase (Pao) and prasinoxanthin. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Olumuyiwa Igbalajobi ◽  
Zhenzhong Yu ◽  
Reinhard Fischer

ABSTRACT The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors. IMPORTANCE Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling.


Author(s):  
Rúben Marques ◽  
Sónia Cruz ◽  
Ricardo Calado ◽  
Ana Lillebø ◽  
Helena Abreu ◽  
...  

Abstract Codium tomentosum is a marine green macroalga with multiple value-added applications that is being successfully used as an extractive species in sustainable integrated multi-trophic aquaculture systems. Nonetheless, growth conditions of this species at an early development phase still require optimization. The present study addresses, under controlled laboratory conditions, the effects of photoperiod (long vs. short-day) and light spectra (white, blue, and red light) on growth and pigment composition of C. tomentosum. Relative growth rate was approximately 2× higher under long-day photoperiod (average of 39.2 and 20.1% week−1 for long and short-day, respectively). Concentrations per dry weight of major pigments such as chlorophyll a (Chla) and siphonoxanthin (Siph) were significantly higher under long-day photoperiod. Relative growth rates were higher under red light, intermediate under white light, and lower under blue light. These last results were rather surprising, as Siph-Chla/Chlb light harvesting complexes of Codium have increased absorption in the blue-green region of the light spectra. Changes in carbon allocation patterns caused by the spectral composition of light and overgrowth of green microalgae in blue light cultures could explain the differences recorded for relative growth rate. Long-day photoperiod and light sources with preferential emission at the red region of the light spectra were identified as optimal for growth of C. tomentosum at early development stages. These lighting conditions can reduce the time required to reach the necessary biomass before transfer to grow-out systems. Overall, these findings can shorten production time, increase macroalgal productivity, and enhance aquaculture revenues.


2018 ◽  
Vol 56 (1) ◽  
pp. 41-66 ◽  
Author(s):  
Gwyn A. Beattie ◽  
Bridget M. Hatfield ◽  
Haili Dong ◽  
Regina S. McGrane

Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peian Zhang ◽  
Suwen Lu ◽  
Zhongjie Liu ◽  
Ting Zheng ◽  
Tianyu Dong ◽  
...  

Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261585
Author(s):  
Majid Esmaeilizadeh ◽  
Mohammad Reza Malekzadeh Shamsabad ◽  
Hamid Reza Roosta ◽  
Piotr Dąbrowski ◽  
Marcin Rapacz ◽  
...  

Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400–700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jing Men ◽  
Airong Li ◽  
Jason Jerwick ◽  
Zilong Li ◽  
Rudolph E. Tanzi ◽  
...  

AbstractDrosophila is a powerful genetic model system for cardiovascular studies. Recently, optogenetic pacing tools have been developed to control Drosophila heart rhythm noninvasively with blue light, which has a limited penetration depth. Here we developed both a red-light sensitive opsin expressing Drosophila system and an integrated red-light stimulation and optical coherence microscopy (OCM) imaging system. We demonstrated noninvasive control of Drosophila cardiac rhythms using a single light source, including simulated tachycardia in ReaChR-expressing flies and bradycardia and cardiac arrest in halorhodopsin (NpHR)-expressing flies at multiple developmental stages. By using red excitation light, we were able to pace flies at higher efficiency and with lower power than with equivalent blue light excitation systems. The recovery dynamics after red-light stimulation of NpHR flies were observed and quantified. The combination of red-light stimulation, OCM imaging, and transgenic Drosophila systems provides a promising and easily manipulated research platform for noninvasive cardiac optogenetic studies.


2016 ◽  
Vol 24 ◽  
pp. 73-78
Author(s):  
L. M. Reshotko ◽  
S. V. Derevianko ◽  
O. O. Dmitruk ◽  
I. V. Volkova

It was found that the additional lighting affects habіtus of in vitro plants: red light correction increases the growth of potato cultivars such as Shchedrik, Tyras and Suvenir Chernihivskyi, and blue light correction leads to a significant reduction in height of Suvenir Chernihivskyi potato cultivar and to the accelerated formation of stolons in all tested varieties. The chlorophyll content in the leaves of potato plants was increased with additional lighting. It depended both on the light spectra and the reaction of varieties to lighting.


2020 ◽  
Vol 3 (2) ◽  
pp. 161-176
Author(s):  
Jillian A Forsyth ◽  
Lauren A Erland ◽  
Paul R Shipley ◽  
Susan J Murch

Light mediates plant growth through diverse mechanisms and signaling networks including plant growth regulators (PGRs). We hypothesized that a novel class of PGRs, the indoleamines, are plant signaling molecules that perceive changes in light composition and initiate a cascade of metabolic responses. We used three Scutellaria model species (skullcap): S. lateriflora, S. galericulata and S. racemosa that produce high levels of melatonin and serotonin to investigate this hypothesis. Axenic Scutellaria cultures were exposed to red, blue, green or full spectrum white light spectra provided by light emitting diode (LED) lighting systems, or daylight fluorescent bulbs. Melatonin (MEL), serotonin (5HT), abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA), were quantified by liquid chromatography with tandem mass spectrometry. Melatonin was detected consistently in plants grown under blue light in all species of Scutellaria. In S. galericulata, significant quantities of ABA were detected in plants grown under white light but not detected in plants grown under other light spectra.  In timeline studies of S. racemosa plants exposed to limited red or blue light spectra had significantly reduced levels of tryptamine (TRM), 5HT and MEL in the shoots initially but melatonin was detected after 12 hours and quantifiable amounts of 5HT were detected after 7 days. Supplementation of the culture medium with MEL or 5HT did not change the pattern of MEL in blue light grown cultures but did change patterns of 5HT accumulation.  5HT was highest in plants grown under red light immediately after culture and decreased over 7 days.  These data indicate that the relative amounts of MEL and 5HT are responsive to light spectra and redirect metabolic resources to enable plant adaptations to changing environments.   


2013 ◽  
Vol 110 (9) ◽  
pp. 2113-2128 ◽  
Author(s):  
Reece E. Mazade ◽  
Erika D. Eggers

Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light.


Sign in / Sign up

Export Citation Format

Share Document