scholarly journals The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander Martin Geller ◽  
Inbal Pollin ◽  
David Zlotkin ◽  
Aleks Danov ◽  
Nimrod Nachmias ◽  
...  

AbstractThe extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.

2020 ◽  
Author(s):  
Alexander Martin Geller ◽  
Inbal Pollin ◽  
David Zlotkin ◽  
Aleks Danov ◽  
Nimrod Nachmias ◽  
...  

AbstractBacteria employ toxin delivery systems to exclude bacterial competitors and to infect host cells. Characterization of these systems and the toxins they secrete is important for understanding microbial interactions and virulence in different ecosystems. The extracellular Contractile Injection System (eCIS) is a toxin delivery particle that evolved from a bacteriophage tail. Four known eCIS systems have been shown to mediate interactions between bacteria and their invertebrate hosts, but the broad ecological function of these systems remains unknown. Here, we identify eCIS loci in 1,249 prokaryotic genomes and reveal a striking enrichment of these loci in environmental microbes and absence from mammalian pathogens. We uncovered 13 toxin genes that associate with eCIS from diverse microbes and show that they can inhibit growth of bacteria, yeast or both. We also found immunity genes that protect bacteria from self-intoxication, supporting an antibacterial role for eCIS. Furthermore, we identified multiple new eCIS core genes including a conserved eCIS transcriptional regulator. Finally, we present our data through eCIStem; an extensive eCIS repository. Our findings define eCIS as a widespread environmental prokaryotic toxin delivery system that likely mediates antagonistic interactions with eukaryotes and prokaryotes. Future understanding of eCIS functions can be leveraged for the development of new biological control systems, antimicrobials, and cell-free protein delivery tools.


2013 ◽  
Vol 8 (1) ◽  
pp. 36
Author(s):  
Olivier Bar ◽  

This paper provides an overview of radiation exposure and its associated risks in the cardiac catheterisation laboratory (cath lab), as well as strategies to minimise radiation exposure for operators, cath lab staff and patients. The benefits of using a mobile 2 mm lead equivalent radiation shield (PISAX) and adoption of an automated contrast injection system (the ACIST CVi® Contrast Delivery System) are discussed, and the potential advantages of their combination are reviewed.


2021 ◽  
Author(s):  
Abraham G. Moller ◽  
Robert A. Petit ◽  
Timothy D. Read

AbstractPhage therapy has been proposed as a possible alternative treatment for infections caused by the ubiquitous bacterial pathogen Staphylococcus aureus. However, successful phage therapy requires knowing both host and phage genetic factors influencing host range for rational cocktail formulation. To further our understanding of host range, we searched 40,000+ public S. aureus genome sequences for previously identified phage resistance genes. We found that phage adsorption targets and genes that block phage assembly were significantly more conserved than genes targeting phage biosynthesis. Core phage resistance genes had similar nucleotide diversity, ratio of non-synonymous to synonymous substitutions, and functionality (measured by delta-bitscore) to other core genes in a set of 380 non-redundant S. aureus genomes (each from a different MLST sequence type). Non-core phage resistance genes were significantly less consistent with the core genome phylogeny than all non-core genes in this set. Only superinfection immunity genes correlated with empirically determined temperate phage resistance, accessory genome content, and numbers of accessory antibiotic resistance or virulence genes encoded per strain. Taken together, these results suggested that, while phage adsorption genes are heavily conserved in the S. aureus species, they are not undergoing positive selection, arms race dynamics. They also suggested genes classified as involved in assembly are least phylogenetically constrained and superinfection immunity genes best predict both empirical phage resistance and levels of phage-mediated HGT.ImportanceStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen that is commonly antibiotic resistant. It causes diverse diseases affecting both the skin and internal organs. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent, such as phage therapy, in which viruses specific to infecting bacteria clear infection. S. aureus phage host range not only determines whether phage therapy will be successful by killing bacteria but also horizontal gene transfer through transduction of host genetic material by phages. In this work, we comprehensively reviewed existing literature to build a list of S. aureus phage resistance genes and searched our database of almost 43,000 S. aureus genomes for these genes to understand their patterns of evolution, finding that prophages’ superinfection immunity correlates best with phage resistance and HGT. These findings improved our understanding of the relationship between known phage resistance genes and phage host range in the species.


2006 ◽  
Vol 175 (4S) ◽  
pp. 323-324 ◽  
Author(s):  
Joseph Dall'era ◽  
Sweaty Koul ◽  
Jesse Mills ◽  
Jeremy Myers ◽  
Randall B. Meacham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document