scholarly journals Vertically transferred maternal immune cells promote neonatal immunity against early life infections

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ina Annelies Stelzer ◽  
Christopher Urbschat ◽  
Steven Schepanski ◽  
Kristin Thiele ◽  
Ioanna Triviai ◽  
...  

AbstractDuring mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens.

2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
T. M. Cardesa-Salzmann ◽  
A. Simon ◽  
N. Graf

AbstractAcute lymphoblastic leukemia (ALL) is the most common pediatric cancer with precursor B-cell ALL (pB-ALL) accounting for ~ 85% of the cases. Childhood pB-ALL development is influenced by genetic susceptibility and host immune responses. The role of the intestinal microbiome in leukemogenesis is gaining increasing attention since Vicente-Dueñas’ seminal work demonstrated that the gut microbiome is distinct in mice genetically predisposed to ALL and that the alteration of this microbiome by antibiotics is able to trigger pB-ALL in Pax5 heterozygous mice in the absence of infectious stimuli. In this review we provide an overview on novel insights on the role of the microbiome in normal and preleukemic hematopoiesis, inflammation, the effect of dysbiosis on hematopoietic stem cells and the emerging importance of the innate immune responses in the conversion from preleukemic to leukemic state in childhood ALL. Since antibiotics, which represent one of the most widely used medical interventions, alter the gut microbial composition and can cause a state of dysbiosis, this raises exciting epidemiological questions regarding the implications for antibiotic use in early life, especially in infants with a a preleukemic “first hit”. Sheading light through a rigorous study on this piece of the puzzle may have broad implications for clinical practice.


2020 ◽  
Vol 80 (7) ◽  
pp. 667-678
Author(s):  
Roberta Passos Palazzo ◽  
Iraci L. S. Torres ◽  
Ágnis Iohana Grefenhagen ◽  
Bruno Batista Silva ◽  
Louisiana Carolina Ferreira Meireles ◽  
...  

2010 ◽  
Vol 31 (3) ◽  
pp. 369-378 ◽  
Author(s):  
Adriana Elizabeth Monsiváis-Urenda ◽  
Lourdes Baranda ◽  
Crisol Alvarez-Quiroga ◽  
Carlos Abud-Mendoza ◽  
Roberto González-Amaro

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 310-310
Author(s):  
Zhenhua Yang ◽  
Kushani Shah ◽  
Jonathan Augustin ◽  
Jing Hu ◽  
Hao Jiang

Abstract Epigenetic modulators have emerged as promising targets for treating cancers, especially blood cancers. As the major histone H3K4 methylation enzymes in mammals, the SET1/MLL complexes represent potential drug targets in epigenetic therapeutics due to (i) the intimate connection of H3K4 methylation with gene expression, and (ii) their extensive association with multiple cancers including blood cancers. However, the functional role for the SET1/MLL complexes in tumorigenesis remains largely unclear. The SET1/MLL complexes comprise one of six different catalytic subunits and several shared core subunits including DPY30. We have previously shown that DPY30 directly facilitates genome-wide H3K4 methylation, and plays a crucial role in fundamental cellular processes including proliferation and differentiation, especially in the hematopoietic system. Our new analyses have shown that the core, but not the catalytic, subunits of SET1/MLL complexes is significantly up-regulated in primary human Burkitt's lymphomas bearing MYC-Ig translocations compared to other B lymphomas, and Myc binds to genes encoding the core but not the catalytic subunits. These results indicate that the core subunits are directly regulated by MYC, and prompted us to study their functional role in MYC-driven tumorigenesis. Using a Dpy30 conditional knockout mouse model that we recently established, we have shown a critical role of Dpy30 in the fate determination of hematopoietic stem and progenitor cells. Due to the severe pancytopenia of the knockout mice, we tested if genetically reducing Dpy30 dose may affect Myc-driven tumorigenesis in the Eμ-myc mouse. We found that Eμ-myc; Dpy30+/- mice survived significantly longer than their Eμ-myc littermates (see figure), with the median survival extended from 121 to 180 days, and with significantly alleviated spleen enlargement. Importantly, Dpy30+/- mice (no Eμ-myc) appear completely healthy with normal blood profiles. These results demonstrate that reducing Dpy30 level confers a significant resistance to Myc-driven lymphomagenesis without affecting normal physiology. We then found that, in the presence of Eμ -Myc, Dpy30 heterozygosity significantly increased apoptosis of splenic B cells, and reduced expression of some key anti-apoptotic genes. We further showed that Dpy30 directly bound to and controlled the H3K4 methylation at the regulated anti-apoptosis genes in splenic B cells. These results suggest that Myc overexpression increases the dependence of key apoptosis-regulatory genes on Dpy30, and thus sensitizes tumor cells to Dpy30 inhibition, exhibiting "epigenetic vulnerability". To further study DPY30's role in MYC-dependent tumorigenesis at the molecular level, we have shown that DPY30 depletion in a MYC-dependent B lymphoma cell line markedly reduced (i) the lymphoma cell growth, (ii) expression of MYC targets, and most interestingly, (iii) binding of MYC to many of its genomic targets, as revealed by our ChIP-seq results. These results suggest that, in addition to promoting the expression of MYC gene itself that we previously found, DPY30 also reguates MYC's activity through promoting the genomic binding of MYC protein for target transcription. Taken together, our studies have established an important role of Dpy30 in the Myc-driven lymphomagenesis, partially through its regulation of the target binding activity of Myc. Further studies of the genome-wide impact of Dpy30 inhibition on the chromatin configuration and expression of key tumoregenic genes are undergoing and will be discussed. These studies will help us understand how Dpy30-mediated chromatin modification coordinates with key oncogenes in promoting hematological malignancies, and thus may represent a potential epigenetic target in treatment of certain blood cancers. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (24) ◽  
pp. 2765-2769 ◽  
Author(s):  
Anna E. Beaudin ◽  
E. Camilla Forsberg

Abstract Hematopoietic stem cells (HSCs) have long been considered the continuous source of all hematopoietic cells for the life of an individual. Recent findings have questioned multiple aspects of this view, including the ability of lifelong HSCs to contribute to tissue-resident immune cells. Here we discuss the most recent findings on the source of B1a cells, innatelike lymphocytes that primarily reside in serous cavities. Powerful experimental approaches including bar coding, single cell transplantation, in vivo lineage tracing, and HSC-specific pulse-chase labeling have provided novel insights on B1a-cell generation during ontogeny. We evaluate the evidence for fetal vs adult B1a-cell production capacity and the identity of putative cells of origin. Integrating these most recent findings with previous work, we propose a working model that encapsulates our current understanding of waves of immune development.


2014 ◽  
Vol 26 (9) ◽  
pp. 613-624 ◽  
Author(s):  
G. Cruz ◽  
W. Foster ◽  
A. Paredes ◽  
K. D. Yi ◽  
M. Uzumcu

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2141
Author(s):  
Katie Alexander ◽  
Charles O. Elson

Bacteria and mammals have co-evolved with one another over millennia, and it has become impossible to interpret mucosal immunity without taking the microbiota into consideration. In fact, the primary role of the mucosal immune system is regulating homeostasis and the host relationship with the microbiota. Bacteria are no longer seen as simply invading pathogens, but rather a necessary component to one’s own immune response. On the one hand, the microbiota is a vital educator of immune cells and initiator of beneficial responses; but, on the other, dysbiosis of microbiota constituents are associated with inflammation and autoimmune disorders. In this review, we will consider recent advances in the understanding of how the microbiota influences host mucosal immunity, particularly the initial development of the immune response and its implications.


Sign in / Sign up

Export Citation Format

Share Document