scholarly journals Electrode pooling can boost the yield of extracellular recordings with switchable silicon probes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyu Hyun Lee ◽  
Yu-Li Ni ◽  
Jennifer Colonell ◽  
Bill Karsh ◽  
Jan Putzeys ◽  
...  

AbstractState-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.

2019 ◽  
Author(s):  
Kyu Hyun Lee ◽  
Yu-Li Ni ◽  
Markus Meister

AbstractState-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites, but only a fraction of them can be used simultaneously due to the forbiddingly large volume of the associated wires. To overcome this fundamental constraint, we propose a novel method called electrode pooling that uses a single wire to serve multiple recording sites. Multiple electrodes are connected to a single wire through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We show that under suitable conditions electrode pooling can save wires without compromising the content of the recordings. We make recommendations for the design of future devices to take advantage of this strategy.


Author(s):  
Chihuang Liu ◽  
Joseph JaJa

Adversarial training has been successfully applied to build robust models at a certain cost. While the robustness of a model increases, the standard classification accuracy declines. This phenomenon is suggested to be an inherent trade-off. We propose a model that employs feature prioritization by a nonlinear attention module and L2 feature regularization to improve the adversarial robustness and the standard accuracy relative to adversarial training. The attention module encourages the model to rely heavily on robust features by assigning larger weights to them while suppressing non-robust features. The regularizer encourages the model to extract similar features for the natural and adversarial images, effectively ignoring the added perturbation. In addition to evaluating the robustness of our model, we provide justification for the attention module and propose a novel experimental strategy that quantitatively demonstrates that our model is almost ideally aligned with salient data characteristics. Additional experimental results illustrate the power of our model relative to the state of the art methods.


Author(s):  
Ieva Vebraite-Adereth ◽  
Moshe David-Pur ◽  
David Rand ◽  
Eric Glowacki ◽  
Yael Hanein

Abstract Objective. Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities. Ex vivo, the retina can be readily investigated using multi electrode arrays. However, multi electrode array recording and stimulation from an intact retina (in the eye) has been so far insufficient. Approach. In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20 µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40 µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50 µm) PU film. Plasma polymerized EDOT was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both ex-planted and intact inside an enucleated eye, were used. Main results. A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate. Ex vivo electrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed. Significance. Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissue in vivo.


2019 ◽  
Vol 13 ◽  
Author(s):  
Beatrice Miccoli ◽  
Carolina Mora Lopez ◽  
Erkuden Goikoetxea ◽  
Jan Putzeys ◽  
Makrina Sekeri ◽  
...  

Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Carl E. Henderson

Over the past few years it has become apparent in our multi-user facility that the computer system and software supplied in 1985 with our CAMECA CAMEBAX-MICRO electron microprobe analyzer has the greatest potential for improvement and updating of any component of the instrument. While the standard CAMECA software running on a DEC PDP-11/23+ computer under the RSX-11M operating system can perform almost any task required of the instrument, the commands are not always intuitive and can be difficult to remember for the casual user (of which our laboratory has many). Given the widespread and growing use of other microcomputers (such as PC’s and Macintoshes) by users of the microprobe, the PDP has become the “oddball” and has also fallen behind the state-of-the-art in terms of processing speed and disk storage capabilities. Upgrade paths within products available from DEC are considered to be too expensive for the benefits received. After using a Macintosh for other tasks in the laboratory, such as instrument use and billing records, word processing, and graphics display, its unique and “friendly” user interface suggested an easier-to-use system for computer control of the electron microprobe automation. Specifically a Macintosh IIx was chosen for its capacity for third-party add-on cards used in instrument control.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


Sign in / Sign up

Export Citation Format

Share Document