scholarly journals Electrode pooling: How to boost the yield of switchable silicon probes for neuronal recordings

2019 ◽  
Author(s):  
Kyu Hyun Lee ◽  
Yu-Li Ni ◽  
Markus Meister

AbstractState-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites, but only a fraction of them can be used simultaneously due to the forbiddingly large volume of the associated wires. To overcome this fundamental constraint, we propose a novel method called electrode pooling that uses a single wire to serve multiple recording sites. Multiple electrodes are connected to a single wire through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We show that under suitable conditions electrode pooling can save wires without compromising the content of the recordings. We make recommendations for the design of future devices to take advantage of this strategy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyu Hyun Lee ◽  
Yu-Li Ni ◽  
Jennifer Colonell ◽  
Bill Karsh ◽  
Jan Putzeys ◽  
...  

AbstractState-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Aysen Degerli ◽  
Mete Ahishali ◽  
Mehmet Yamac ◽  
Serkan Kiranyaz ◽  
Muhammad E. H. Chowdhury ◽  
...  

AbstractComputer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human–machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1517
Author(s):  
Xinsheng Wang ◽  
Xiyue Wang

True random number generators (TRNGs) have been a research hotspot due to secure encryption algorithm requirements. Therefore, such circuits are necessary building blocks in state-of-the-art security controllers. In this paper, a TRNG based on random telegraph noise (RTN) with a controllable rate is proposed. A novel method of noise array circuits is presented, which consists of digital decoder circuits and RTN noise circuits. The frequency of generating random numbers is controlled by the speed of selecting different gating signals. The results of simulation show that the array circuits consist of 64 noise source circuits that can generate random numbers by a frequency from 1 kHz to 16 kHz.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Huaping Guo ◽  
Weimei Zhi ◽  
Hongbing Liu ◽  
Mingliang Xu

In recent years, imbalanced learning problem has attracted more and more attentions from both academia and industry, and the problem is concerned with the performance of learning algorithms in the presence of data with severe class distribution skews. In this paper, we apply the well-known statistical model logistic discrimination to this problem and propose a novel method to improve its performance. To fully consider the class imbalance, we design a new cost function which takes into account the accuracies of both positive class and negative class as well as the precision of positive class. Unlike traditional logistic discrimination, the proposed method learns its parameters by maximizing the proposed cost function. Experimental results show that, compared with other state-of-the-art methods, the proposed one shows significantly better performance on measures of recall,g-mean,f-measure, AUC, and accuracy.


2018 ◽  
Vol 35 (14) ◽  
pp. 2458-2465 ◽  
Author(s):  
Johanna Schwarz ◽  
Dominik Heider

Abstract Motivation Clinical decision support systems have been applied in numerous fields, ranging from cancer survival toward drug resistance prediction. Nevertheless, clinical decision support systems typically have a caveat: many of them are perceived as black-boxes by non-experts and, unfortunately, the obtained scores cannot usually be interpreted as class probability estimates. In probability-focused medical applications, it is not sufficient to perform well with regards to discrimination and, consequently, various calibration methods have been developed to enable probabilistic interpretation. The aims of this study were (i) to develop a tool for fast and comparative analysis of different calibration methods, (ii) to demonstrate their limitations for the use on clinical data and (iii) to introduce our novel method GUESS. Results We compared the performances of two different state-of-the-art calibration methods, namely histogram binning and Bayesian Binning in Quantiles, as well as our novel method GUESS on both, simulated and real-world datasets. GUESS demonstrated calibration performance comparable to the state-of-the-art methods and always retained accurate class discrimination. GUESS showed superior calibration performance in small datasets and therefore may be an optimal calibration method for typical clinical datasets. Moreover, we provide a framework (CalibratR) for R, which can be used to identify the most suitable calibration method for novel datasets in a timely and efficient manner. Using calibrated probability estimates instead of original classifier scores will contribute to the acceptance and dissemination of machine learning based classification models in cost-sensitive applications, such as clinical research. Availability and implementation GUESS as part of CalibratR can be downloaded at CRAN.


2019 ◽  
Author(s):  
Mehrdad Shoeiby ◽  
Mohammad Ali Armin ◽  
Sadegh Aliakbarian ◽  
Saeed Anwar ◽  
Lars petersson

<div>Advances in the design of multi-spectral cameras have</div><div>led to great interests in a wide range of applications, from</div><div>astronomy to autonomous driving. However, such cameras</div><div>inherently suffer from a trade-off between the spatial and</div><div>spectral resolution. In this paper, we propose to address</div><div>this limitation by introducing a novel method to carry out</div><div>super-resolution on raw mosaic images, multi-spectral or</div><div>RGB Bayer, captured by modern real-time single-shot mo-</div><div>saic sensors. To this end, we design a deep super-resolution</div><div>architecture that benefits from a sequential feature pyramid</div><div>along the depth of the network. This, in fact, is achieved</div><div>by utilizing a convolutional LSTM (ConvLSTM) to learn the</div><div>inter-dependencies between features at different receptive</div><div>fields. Additionally, by investigating the effect of different</div><div>attention mechanisms in our framework, we show that a</div><div>ConvLSTM inspired module is able to provide superior at-</div><div>tention in our context. Our extensive experiments and anal-</div><div>yses evidence that our approach yields significant super-</div><div>resolution quality, outperforming current state-of-the-art</div><div>mosaic super-resolution methods on both Bayer and multi-</div><div>spectral images. Additionally, to the best of our knowledge,</div><div>our method is the first specialized method to super-resolve</div><div>mosaic images, whether it be multi-spectral or Bayer.</div><div><br></div>


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


2022 ◽  
Vol 14 (2) ◽  
pp. 259
Author(s):  
Yuting Yang ◽  
Kenneth Kin-Man Lam ◽  
Xin Sun ◽  
Junyu Dong ◽  
Redouane Lguensat

Marine hydrological elements are of vital importance in marine surveys. The evolution of these elements can have a profound effect on the relationship between human activities and marine hydrology. Therefore, the detection and explanation of the evolution laws of marine hydrological elements are urgently needed. In this paper, a novel method, named Evolution Trend Recognition (ETR), is proposed to recognize the trend of ocean fronts, being the most important information in the ocean dynamic process. Therefore, in this paper, we focus on the task of ocean-front trend classification. A novel classification algorithm is first proposed for recognizing the ocean-front trend, in terms of the ocean-front scale and strength. Then, the GoogLeNet Inception network is trained to classify the ocean-front trend, i.e., enhancing or attenuating. The ocean-front trend is classified using the deep neural network, as well as a physics-informed classification algorithm. The two classification results are combined to make the final decision on the trend classification. Furthermore, two novel databases were created for this research, and their generation method is described, to foster research in this direction. These two databases are called the Ocean-Front Tracking Dataset (OFTraD) and the Ocean-Front Trend Dataset (OFTreD). Moreover, experiment results show that our proposed method on OFTreD achieves a higher classification accuracy, which is 97.5%, than state-of-the-art networks. This demonstrates that the proposed ETR algorithm is highly promising for trend classification.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1266
Author(s):  
Jing Qin ◽  
Liang Chen ◽  
Jian Xu ◽  
Wenqi Ren

In this paper, we propose a novel method to remove haze from a single hazy input image based on the sparse representation. In our method, the sparse representation is proposed to be used as a contextual regularization tool, which can reduce the block artifacts and halos produced by only using dark channel prior without soft matting as the transmission is not always constant in a local patch. A novel way to use dictionary is proposed to smooth an image and generate the sharp dehazed result. Experimental results demonstrate that our proposed method performs favorably against the state-of-the-art dehazing methods and produces high-quality dehazed and vivid color results.


Sign in / Sign up

Export Citation Format

Share Document