scholarly journals Recycling lead and transparent conductors from perovskite solar modules

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Chen ◽  
Chengbin Fei ◽  
Shangshang Chen ◽  
Hangyu Gu ◽  
Xun Xiao ◽  
...  

AbstractPerovskite photovoltaics are gaining increasing common ground to partner with or compete with silicon photovoltaics to reduce cost of solar energy. However, a cost-effective waste management for toxic lead (Pb), which might determine the fate of this technology, has not been developed yet. Here, we report an end-of-life material management for perovskite solar modules to recycle toxic lead and valuable transparent conductors to protect the environment and create dramatic economic benefits from recycled materials. Lead is separated from decommissioned modules by weakly acidic cation exchange resin, which could be released as soluble Pb(NO3)2 followed by precipitation as PbI2 for reuse, with a recycling efficiency of 99.2%. Thermal delamination disassembles the encapsulated modules with intact transparent conductors and cover glasses. The refabricated devices based on recycled lead iodide and recycled transparent conductors show comparable performance as devices based on fresh raw materials. Cost analysis shows this recycling technology is economically attractive.

Author(s):  
Rayapati Subbarao ◽  
Saisarath Kruthiventi

Depletion of petroleum based fuels has been a lot of concern among the governments and researchers around the world. Usage of biofuels in place of the conventional fuels is showing rapid growth because of the favourable characteristics like better performance and time improved emission characteristics. Present paper discusses about different available biofuels and their effectiveness in replacing fossil fuels and also how they affect the technological growth. Different works are compared to bring out the actual scenario with respect to the performance, emission, availability, production and preparation methods. It is observed that much effort is made by the stake holders in order to see biofuels as a viable alternative and as a future fuel for internal combustion engines. Performance improves slightly with the usage of biofuels and reduced emission characteristics may be logical to observe. But it may not be appreciable, considering the series of production processes involved. It still requires lot of time to commercialize and produce biofuels in mass. Also, there have been constraints like the availability of raw materials for the same. It is concluded that biofuels do play significant role in the days to come provided there is much more effort from researchers to simplify the technology in making biofuel as sustainable and cost effective with at least comparable performance.  


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1978 ◽  
Author(s):  
Sanna Uski ◽  
Erkka Rinne ◽  
Janne Sarsama

Microgrids can be used for securing the supply of power during network outages. Underground cabling of distribution networks is another effective but conventional and expensive alternative to enhance the reliability of the power supply. This paper first presents an analysis method for the determination of microgrid power supply adequacy during islanded operation and, second, presents a comparison method for the overall cost calculation of microgrids versus underground cabling. The microgrid power adequacy during a rather long network outage is required in order to indicate high level of reliability of the supply. The overall cost calculation considers the economic benefits and costs incurred, combined for both the distribution network company and the consumer. Whereas the microgrid setup determines the islanded-operation power adequacy and thus the reliability of the supply, the economic feasibility results from the normal operations and services. The methods are illustrated by two typical, and even critical, case studies in rural distribution networks: an electric-heated detached house and a dairy farm. These case studies show that even in the case of a single consumer, a microgrid option could be more economical than network renovation by underground cabling of a branch in order to increase the reliability.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jianming Guo ◽  
Kaixuan Huang ◽  
Rou Cao ◽  
Junhua Zhang ◽  
Yong Xu

Abstract Background Xylo-oligosaccharide is the spotlight of functional sugar that improves the economic benefits of lignocellulose biorefinery. Acetic acid acidolysis technology provides a promising application for xylo-oligosaccharide commercial production, but it is restricted by the aliphatic (wax-like) compounds, which cover the outer and inner surfaces of plants. Results We removed aliphatic compounds by extraction with two organic solvents. The benzene–ethanol extraction increased the yield of acidolyzed xylo-oligosaccharides of corncob, sugarcane bagasse, wheat straw, and poplar sawdust by 14.79, 21.05, 16.68, and 7.26% while ethanol extraction increased it by 11.88, 17.43, 1.26, and 13.64%, respectively. Conclusion The single ethanol extraction was safer, more environmentally friendly, and more cost-effective than benzene–ethanol solvent. In short, organic solvent extraction provided a promising auxiliary method for the selective acidolysis of herbaceous xylan to xylo-oligosaccharides, while it had minimal impact on woody poplar.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 590
Author(s):  
Fernando V. Lima ◽  
Gerardo J. Ruiz-Mercado

The growing worldwide demand for energy and resources, combined with the stringent environmental challenges and regulations, means that the efficient, cost-effective, and sustainable use of energy and material sources, including bio-based, has become increasingly important [...]


2020 ◽  
Vol 27 (1) ◽  
pp. 424-432
Author(s):  
Hongkai Zhao ◽  
Kehan Zhang ◽  
Shoupeng Rui ◽  
Peipei Zhao

AbstractIn the present contribution, an environmental-friendly and cost-effective adsorbent was reported for soil treatment and desertification control. A novel foam gel material was synthesized here by the physical foaming in the absence of catalyst. By adopting modified microcrystalline cellulose and chitosan as raw materials and sodium dodecyl sulfonate (SDS) as foaming agent, a microcrystalline cellulose/chitosan blend foam gel was synthesized. It is expected to replace polymers derived from petroleum for agricultural applications. In addition, a systematical study was conducted on the adsorbability, water holding capacity and re-expansion performance of foam gel in deionized water and brine under different SDS concentrations (2%–5%) as well as adsorption time. To be specific, the adsorption capacity of foam gel was up to 105g/g in distilled water and 54g/g in brine, indicating a high water absorption performance. As revealed from the results of Fourier transform infrared spectroscopy (FTIR) analysis, both the amino group of chitosan and the aldehyde group modified by cellulose were involved. According to the results of Scanning electron microscope (SEM) analysis, the foam gel was found to exhibit an interconnected pore network with uniform pore space. As suggested by Bet analysis, the macroporous structure was formed in the sample, and the pore size ranged from 0 to 170nm. The mentioned findings demonstrated that the foam gel material of this study refers to a potential environmental absorbent to improve soil and desert environments. It can act as a powerful alternative to conventional petroleum derived polymers.


2014 ◽  
Vol 54 (6) ◽  
pp. 414-419
Author(s):  
Julius Lisuch ◽  
Dusan Dorcak ◽  
Jan Spisak

<pre><pre>Significant proportion of the total energy expenditure for the heat treatment of raw materials are heat losses through the shell of rotary furnace. Currently, the waste heat is not used in any way and escapes into the environment. Controlled cooling system for rotary furnace shell (<span>CCSRF</span>) is a new solution integrated into the technological process aimed at reducing the heat loss of the furnace shell. Based on simulations and experiments carried out was demonstrated a significant effect of controlled cooling shell to the rotary furnace work. The proposed solution is cost-effective and operationally undemanding.</pre></pre>


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Joachim Göttsche ◽  
Bernhard Hoffschmidt ◽  
Stefan Schmitz ◽  
Markus Sauerborn ◽  
Reiner Buck ◽  
...  

The cost of solar tower power plants is dominated by the heliostat field making up roughly 50% of investment costs. Classical heliostat design is dominated by mirrors brought into position by steel structures and drives that guarantee high accuracies under wind loads and thermal stress situations. A large fraction of costs is caused by the stiffness requirements of the steel structure, typically resulting in ∼20 kg/m2 steel per mirror area. The typical cost figure of heliostats (figure mentioned by Solucar at Solar Paces Conference, Seville, 2006) is currently in the area of 150 €/m2 caused by the increasing price of the necessary raw materials. An interesting option to reduce costs lies in a heliostat design where all moving parts are protected from wind loads. In this way, drives and mechanical layout may be kept less robust, thereby reducing material input and costs. In order to keep the heliostat at an appropriate size, small mirrors (around 10×10 cm2) have to be used, which are placed in a box with a transparent cover. Innovative drive systems are developed in order to obtain a cost-effective design. A 0.5×0.5 m2 demonstration unit will be constructed. Tests of the unit are carried out with a high-precision artificial sun unit that imitates the sun’s path with an accuracy of less than 0.5 mrad and creates a beam of parallel light with a divergence of less than 4 mrad.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2383
Author(s):  
Daniele Torsello ◽  
Mattia Bartoli ◽  
Mauro Giorcelli ◽  
Massimo Rovere ◽  
Rossella Arrigo ◽  
...  

We report on the microwave shielding efficiency of non-structural composites, where inclusions of biochar—a cost effective and eco-friendly material—are dispersed in matrices of interest for building construction. We directly measured the complex permittivity of raw materials and composites, in the frequency range 100 MHz–8 GHz. A proper permittivity mixing formula allows obtaining other combinations, to enlarge the case studies. From complex permittivity, finally, we calculated the shielding efficiency, showing that tailoring the content of biochar allows obtaining a desired value of electromagnetic shielding, potentially useful for different applications. This approach represents a quick preliminary evaluation tool to design composites with desired shielding properties starting from physical parameters.


2021 ◽  
Vol 17 (1) ◽  
pp. 70-77
Author(s):  
E. Е. Ulyanchenko ◽  
N. N. Vinevskaya

Cultivation and use of Virginia 202 broadleaf skeletal variety for the production of smoking tobacco has broad prospects. Problems of post-harvest processing of large leaves with a massive midrib consist in high energy costs with an artificial drying method or the provision of facilities for long-term natural drying. The aim of the research is to apply physical method of cutting the leaf midrib to intensify drying and to determine the effect of this technique on the quality indicators of raw materials. It has been found that the technique of cutting the midrib on the Virginia 202 variety contributes to a significant optimization of the drying process without reducing the quality of raw materials. The drying time of leaves with the combined method is reduced by 2,8 times, with the natural method – by 2,3 times, and the quality indicators of raw materials improve. Commercial quality is characterized by the yield of 1 commercial grade, for combined drying the yield of 1 grade has increased in comparison with the control sample by 27% and amounted to 86,5%, with natural drying – the increase in yield is 4%. Cutting the midrib increases the fiber yield by 3–5% and contributes to an increase in the volumetric-elastic properties of the fiber, providing an economical consumption of raw materials for the production of smoking articles, the consumption is 676,8–753,8 g/1000 pcs. The gustatory quality improves, raw materials with a cut midrib have optimal values of the ratio of carbohydrate-protein balance in the range of 1,08–1,5, the strength is preserved due to the lower consumption of nicotine during the shorter drying period, in comparison with drying the leaf without cutting the midrib. Cutting the midrib in Virginia 202 is cost effective.


Sign in / Sign up

Export Citation Format

Share Document