scholarly journals Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nivea Pereira de Sa ◽  
Adam Taouil ◽  
Jinwoo Kim ◽  
Timothy Clement ◽  
Reece M. Hoffmann ◽  
...  

AbstractPathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3β-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3β-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1’s substrate specificity and enable the rational design of antifungal agents targeting Sgl1.

2004 ◽  
Vol 48 (5) ◽  
pp. 1561-1569 ◽  
Author(s):  
Ranjini Ganendren ◽  
Fred Widmer ◽  
Vatsala Singhal ◽  
Christabel Wilson ◽  
Tania Sorrell ◽  
...  

ABSTRACT Secreted phospholipase B is a proven virulence factor for the pathogenic fungus Cryptococcus neoformans and exhibits three phospholipase activities in the one protein. These are phospholipase B (PLB), lysophospholipase (LPL), and lysophospholipase transacylase (LPTA). Our aim was to investigate the feasibility of using this enzyme as a target for antifungal therapy. We determined in C. neoformans var. grubii strain H99 that 82% of PLB activity was secreted but that 64% of LPL activity and 70% of LPTA activity were cell associated. Cell-associated activities (cytosolic and membrane) were further characterized, since it is likely that any fungicidal effect would depend on inhibition of these enzymes. Four commercially available compounds with structural similarities to phospholipid substrates were tested as inhibitors. These were alexidine dihydrochloride (compound A), dioctadecyldimethylammonium bromide (compound O), 1,12 bis-(tributylphosphonium)dodecane dibromide (compound P), and decamethonium dibromide (compound D). The best phospholipase inhibitors (compounds A and P) were also the most potent antifungal agents by the standard broth microdilution test. Compound A was highly selective for secreted and cell-associated PLB activities and showed no inhibition of mammalian phospholipase A 2 at 0.25 μM. Compound O, which was specific for secretory and cytosolic LPL and LPTA and membrane-associated PLB, was not antifungal. We conclude that inhibitors of cryptococcal phospholipases can be selective for fungal enzymes and intrinsically antifungal. They also provide tools for assessing the relative importance of the various enzyme activities in virulence. Our results enable further rational structure-function studies to validate the use of phospholipases as antifungal targets.


2003 ◽  
Vol 71 (5) ◽  
pp. 2927-2832 ◽  
Author(s):  
Bryan H. Bellaire ◽  
Philip H. Elzer ◽  
Cynthia L. Baldwin ◽  
R. Martin Roop

ABSTRACT Production of the siderophore 2,3-dihyroxybenzoic acid (2,3-DHBA) is required for the wild-type virulence of Brucella abortus in cattle. A possible explanation for this requirement was uncovered when it was determined that a B. abortus dhbC mutant (BHB1) defective in 2,3-DHBA production displays marked growth restriction in comparison to its parent strain, B. abortus 2308, when cultured in the presence of erythritol under low-iron conditions. This phenotype is not displayed when these strains are cultured under low-iron conditions in the presence of other readily utilizable carbon and energy sources. The addition of either exogenous 2,3-DHBA or FeCl3 relieves this growth defect, suggesting that the inability of the B. abortus dhbC mutant to display wild-type growth in the presence of erythritol under iron-limiting conditions is due to a defect in iron acquisition. Restoring 2,3-DHBA production to the B. abortus dhbC mutant by genetic complementation abolished the erythritol-specific growth defect exhibited by this strain in low-iron medium, verifying the relationship between 2,3-DHBA production and efficient growth in the presence of erythritol under low-iron conditions. The positive correlation between 2,3-DHBA production and growth in the presence of erythritol was further substantiated by the observation that the addition of erythritol to low-iron cultures of B. abortus 2308 stimulated the production of 2,3-DHBA by increasing the transcription of the dhbCEBA operon. Correspondingly, the level of exogenous iron needed to repress dhbCEBA expression in B. abortus 2308 was also greater when this strain was cultured in the presence of erythritol than that required when it was cultured in the presence of any of the other readily utilizable carbon and energy sources tested. The tissues of the bovine reproductive tract are rich in erythritol during the latter stages of pregnancy, and the ability to metabolize erythritol is thought to be important to the virulence of B. abortus in pregnant ruminants. Consequently, the experimental findings presented here offer a plausible explanation for the attenuation of the B. abortus 2,3-DHBA-deficient mutant BHB1 in pregnant ruminants.


1998 ◽  
Vol 42 (11) ◽  
pp. 2863-2869 ◽  
Author(s):  
E. Herreros ◽  
C. M. Martinez ◽  
M. J. Almela ◽  
M. S. Marriott ◽  
F. Gomez De Las Heras ◽  
...  

ABSTRACT GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans,Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 μg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 μg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 μg/ml, respectively, forC. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. AgainstC. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 μg/ml and 1 and 16 μg/ml, respectively. The MIC90s of GM 222712 and GM 237354 againstCryptococcus neoformans were 0.5 and 0.25 μg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 μg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 μg/ml and 32 and >64 μg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from ≤0.25 to 2 μg/ml. The MICs of GM 237354 against Trichosporon beigelii and the zygomycetesAbsidia corymbifera, Cunninghamella bertholletiae, and Rhizopus arrhizus ranged from ≤0.25 to 8 μg/ml. Against dermatophytes, GM 237354 MICs were ≥2 μg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, includingCandida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Wiley A. Schell ◽  
A. M. Jones ◽  
Katyna Borroto-Esoda ◽  
Barbara D. Alexander

ABSTRACT SCY-078 in vitro activity was determined for 178 isolates of resistant or susceptible Candida albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitaniae, and Candida parapsilosis, including 44 Candida isolates with known genotypic (FKS1 or FKS2 mutations), phenotypic, or clinical resistance to echinocandins. Results were compared to those for anidulafungin, caspofungin, micafungin, fluconazole, and voriconazole. SCY-078 was shown to have excellent activity against both wild-type isolates and echinocandin- and azole-resistant isolates of Candida species.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009116
Author(s):  
Allison N. Dammann ◽  
Anna B. Chamby ◽  
Andrew J. Catomeris ◽  
Kyle M. Davidson ◽  
Hervé Tettelin ◽  
...  

Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Paul E. Alele

Background. Echinops kebericho is an endemic medicinal plant in Ethiopia widely used in the treatment of infectious and noninfectious diseases. Essential oils are known for their antibacterial, antifungal, antiviral, insecticidal, and antioxidant properties. This study evaluated the antifungal activity of essential oil from E. kebericho against four common pathogenic fungi and two standard strains. Methods. The essential oil was obtained by hydrodistillation. The antifungal screening was done by agar well diffusion method. Minimal inhibitory concentrations (MICs) were determined by broth microdilution. Minimal fungicidal concentrations (MFCs) were determined by subculturing fungal strains with no visible growth onto a Sabouraud dextrose agar (SDA) plate. Results. Candida albicans and Cryptococcus neoformans were highly sensitive while Aspergillus flavus did not show sensitivity up to 1 mg/ml of essential oil; MICs ranged from 0.083 mg/ml to 0.208 mg/ml. Concentration and fungal species showed significant dose-dependent associations ( p < 0.0001 ) with antifungal activity. The MICs of essential oil were comparable to those of the standard drug (fluconazole) against C. glabrata and C. krusei. The lowest MFC of the essential oil was observed against Candida parapsilosis (0.145 mg/ml) while the highest MFC was against Candida krusei (0.667 mg/ml). Conclusion. Echinops kebericho essential oil showed noteworthy antifungal activity against Cryptococcus neoformans, Candida albicans, and Candida glabrata and could be a potential candidate for further antifungal drug development.


1997 ◽  
Vol 41 (7) ◽  
pp. 1465-1467 ◽  
Author(s):  
D C Lamb ◽  
B C Baldwin ◽  
K J Kwon-Chung ◽  
S L Kelly

We investigated the stereoselective inhibition of growth and ergosterol biosynthesis by SCH39304 in the pathogenic fungus Cryptococcus neoformans obtained from four AIDS patients who failed fluconazole therapy and compared the results to those obtained with a wild-type strain. For all strains, the MICs of the RR isomer were approximately half those of the racemate, with the SS enantiomer showing no inhibitory activity. The 50% inhibitory concentrations for in vitro ergosterol biosynthesis correlated with the MIC data, indicating stereoselective inhibition of their target P-450 enzyme, sterol 14alpha-demethylase, as the cause of this difference. The RR enantiomer produced classical type II spectra on addition to microsomal extracts of the strains, whereas the SS enantiomer showed an absence of binding. Stereo- and regio-specific localization of N-1 substituent groups of SCH39304 within the active site of the enzyme determined the unique discrimination between its two enantiomers, and the inability to bind to sterol 14alpha-demethylase is also true of other P-450 enzymes contained in the microsomal fraction. As previously observed for other antifungal azoles, isolates obtained following failure of fluconazole therapy showed resistance to SCH39304 and its RR enantiomer. This resistance could be associated with an alteration in the sensitivity of ergosterol biosynthesis in vitro. These alterations did not cause any changes allowing the SS enantiomer to bind to the P-450 mediating sterol 14alpha-demethylation.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Belinda X. Ong ◽  
Youngki Yoo ◽  
Myeong Gil Han ◽  
Jun Bae Park ◽  
Myung Kyung Choi ◽  
...  

Abstract CK2α is a constitutively active and highly conserved serine/threonine protein kinase that is involved in the regulation of key cellular metabolic pathways and associated with a variety of tumours and cancers. The most well-known CK2α inhibitor is the human clinical trial candidate CX-4945, which has recently shown to exhibit not only anti-cancer, but also anti-fungal properties. This prompted us to work on the CK2α orthologue, Cka1, from the pathogenic fungus Cryptococcus neoformans, which causes life-threatening systemic cryptococcosis and meningoencephalitis mainly in immunocompromised individuals. At present, treatment of cryptococcosis remains a challenge due to limited anti-cryptococcal therapeutic strategies. Hence, expanding therapeutic options for the treatment of the disease is highly clinically relevant. Herein, we report the structures of Cka1-AMPPNP-Mg2+ (2.40 Å) and Cka1-CX-4945 (2.09 Å). Structural comparisons of Cka1-AMPPNP-Mg2+ with other orthologues revealed the dynamic architecture of the N-lobe across species. This may explain for the difference in binding affinities and deviations in protein-inhibitor interactions between Cka1-CX-4945 and human CK2α-CX-4945. Supporting it, in vitro kinase assay demonstrated that CX-4945 inhibited human CK2α much more efficiently than Cka1. Our results provide structural insights into the design of more selective inhibitors against Cka1.


2003 ◽  
Vol 71 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Gary M. Cox ◽  
Thomas S. Harrison ◽  
Henry C. McDade ◽  
Carlos P. Taborda ◽  
Garrett Heinrich ◽  
...  

ABSTRACT Superoxide dismutase (SOD) is an enzyme that converts superoxide radicals into hydrogen peroxide and molecular oxygen and has been shown to contribute to the virulence of many human-pathogenic bacteria through its ability to neutralize toxic levels of reactive oxygen species generated by the host. SOD has also been speculated to be important in the pathogenesis of fungal infections, but the role of this enzyme has not been rigorously investigated. To examine the contribution of SOD to the pathogenesis of fungal infections, we cloned the Cu,Zn SOD-encoding gene (SOD1) from the human-pathogenic yeast Cryptococcus neoformans and made mutants via targeted disruption. The sod1 mutant strains had marked decreases in SOD activity and were strikingly more susceptible to reactive oxygen species in vitro. A sod1 mutant was significantly less virulent than the wild-type strain and two independent reconstituted strains, as measured by cumulative survival in the mouse inhalational model. In vitro studies established that the sod1 strain had attenuated growth compared to the growth of the wild type and a reconstituted strain inside macrophages producing reduced amounts of nitric oxide. These findings demonstrate that (i) the Cu,Zn SOD contributes to virulence but is not required for pathogenicity in C. neoformans; (ii) the decreased virulence of the sod1 strain may be due to increased susceptibility to oxygen radicals within macrophages; and (iii) other antioxidant defense systems in C. neoformans can compensate for the loss of the Cu,Zn SOD in vivo.


Sign in / Sign up

Export Citation Format

Share Document