scholarly journals Rapid incidence estimation from SARS-CoV-2 genomes reveals decreased case detection in Europe during summer 2020

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maureen Rebecca Smith ◽  
Maria Trofimova ◽  
Ariane Weber ◽  
Yannick Duport ◽  
Denise Kühnert ◽  
...  

AbstractBy October 2021, 230 million SARS-CoV-2 diagnoses have been reported. Yet, a considerable proportion of cases remains undetected. Here, we propose GInPipe, a method that rapidly reconstructs SARS-CoV-2 incidence profiles solely from publicly available, time-stamped viral genomes. We validate GInPipe against simulated outbreaks and elaborate phylodynamic analyses. Using available sequence data, we reconstruct incidence histories for Denmark, Scotland, Switzerland, and Victoria (Australia) and demonstrate, how to use the method to investigate the effects of changing testing policies on case ascertainment. Specifically, we find that under-reporting was highest during summer 2020 in Europe, coinciding with more liberal testing policies at times of low testing capacities. Due to the increased use of real-time sequencing, it is envisaged that GInPipe can complement established surveillance tools to monitor the SARS-CoV-2 pandemic. In post-pandemic times, when diagnostic efforts are decreasing, GInPipe may facilitate the detection of hidden infection dynamics.

2021 ◽  
Author(s):  
Maureen Smith ◽  
Maria Trofimova ◽  
Ariane Weber ◽  
Yannick Duport ◽  
Denise Kühnert ◽  
...  

Abstract By May 2021, over 160 million SARS-CoV-2 diagnoses have been reported worldwide. Yet, the true number of infections is unknown and believed to exceed the reported numbers by several fold. National testing policies, in particular, can strongly affect the proportion of undetected cases. Here, we propose a novel method (GInPipe) that reconstructs SARS-CoV-2 incidence profiles within minutes, solely from publicly available, time-stamped viral genomes. We validated GInPipe against in silico generated outbreak data and elaborate phylodynamic analyses. We apply the method to reconstruct incidence histories from sequence data for Denmark, Scotland, Switzerland, and Victoria (Australia). GInPipe reconstructs the different pandemic waves robustly and remarkably accurate. We demonstrate how the method can be used to investigate the effects of changing testing policies on the probability to diagnose and report infected individuals. Specifically, we find that under-reporting was highest in mid 2020 in parts of Europe, coinciding with changes towards more liberal testing policies at times of low testing capacities. Due to the increased use of real-time sequencing, it is envisaged that GInPipe can complement established surveillance tools to monitor the SARS-CoV-2 pandemic. We anticipate that the method is particularly useful in settings where diagnostic and reporting infrastructures are insufficient. In ‘post-pandemic’ times, when diagnostic efforts are decreased, GInPipe may facilitate the detection of hidden infection dynamics.


2017 ◽  
Author(s):  
James Hadfield ◽  
Colin Megill ◽  
Sidney M. Bell ◽  
John Huddleston ◽  
Barney Potter ◽  
...  

AbstractSummaryUnderstanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualisation platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, publicly available for use by health professionals, epidemiologists, virologists and the public alike.Availability and implementationAll code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.


2021 ◽  
Author(s):  
Maureen Rebecca Smith ◽  
Maria Trofimova ◽  
Ariane Weber ◽  
Yannick Duport ◽  
Denise Kuhnert ◽  
...  

In May 2021, over 160 million SARS-CoV-2 infections have been reported worldwide. Yet, the true amount of infections is unknown and believed to exceed the reported numbers by several fold, depending on national testing policies that can strongly affect the proportion of undetected cases. To overcome this testing bias and better assess SARS-CoV-2 transmission dynamics, we propose a genome-based computational pipeline, GInPipe, to reconstruct the SARS-CoV-2 incidence dynamics through time. After validating GInPipe against in silico generated outbreak data, as well as more complex phylodynamic analyses, we use the pipeline to reconstruct incidence histories in Denmark, Scotland, Switzerland, and Victoria (Australia) solely from viral sequence data. The proposed method robustly reconstructs the different pandemic waves in the investigated countries and regions, does not require phylodynamic reconstruction, and can be directly applied to publicly deposited SARS-CoV-2 sequencing data sets. We observe differences in the relative magnitude of reconstructed versus reported incidences during times with sparse availability of diagnostic tests. Using the reconstructed incidence dynamics, we assess how testing policies may have affected the probability to diagnose and report infected individuals. We find that under-reporting was highest in mid 2020 in all analysed countries, coinciding with liberal testing policies at times of low test capacities. Due to the increased use of real-time sequencing, it is envisaged that GInPipe can complement established surveillance tools to monitor the SARS-CoV-2 pandemic and evaluate testing policies. The method executes within minutes on very large data sets and is freely available as a fully automated pipeline from https://github.com/KleistLab/GInPipe.


2021 ◽  
Vol 6 (2) ◽  
pp. 94
Author(s):  
Pruthu Thekkur ◽  
Kudakwashe C. Takarinda ◽  
Collins Timire ◽  
Charles Sandy ◽  
Tsitsi Apollo ◽  
...  

When COVID-19 was declared a pandemic, there was concern that TB and HIV services in Zimbabwe would be severely affected. We set up real-time monthly surveillance of TB and HIV activities in 10 health facilities in Harare to capture trends in TB case detection, TB treatment outcomes and HIV testing and use these data to facilitate corrective action. Aggregate data were collected monthly during the COVID-19 period (March 2020–February 2021) using EpiCollect5 and compared with monthly data extracted for the pre-COVID-19 period (March 2019–February 2020). Monthly reports were sent to program directors. During the COVID-19 period, there was a decrease in persons with presumptive pulmonary TB (40.6%), in patients registered for TB treatment (33.7%) and in individuals tested for HIV (62.8%). The HIV testing decline improved in the second 6 months of the COVID-19 period. However, TB case finding deteriorated further, associated with expiry of diagnostic reagents. During the COVID-19 period, TB treatment success decreased from 80.9 to 69.3%, and referral of HIV-positive persons to antiretroviral therapy decreased from 95.7 to 91.7%. Declining trends in TB and HIV case detection and TB treatment outcomes were not fully redressed despite real-time monthly surveillance. More support is needed to transform this useful information into action.


Digital Twin ◽  
2021 ◽  
Vol 1 ◽  
pp. 10
Author(s):  
Qing Hong ◽  
Yifeng Sun ◽  
Tingyu Liu ◽  
Liang Fu ◽  
Yunfeng Xie

Background: Intelligent monitoring of human action in production is an important step to help standardize production processes and construct a digital twin shop-floor rapidly. Human action has a significant impact on the production safety and efficiency of a shop-floor, however, because of the high individual initiative of humans, it is difficult to realize real-time action detection in a digital twin shop-floor. Methods: We proposed a real-time detection approach for shop-floor production action. This approach used the sequence data of continuous human skeleton joints sequences as the input. We then reconstructed the Joint Classification-Regression Recurrent Neural Networks (JCR-RNN) based on Temporal Convolution Network (TCN) and Graph Convolution Network (GCN). We called this approach the Temporal Action Detection Net (TAD-Net), which realized real-time shop-floor production action detection. Results: The results of the verification experiment showed that our approach has achieved a high temporal positioning score, recognition speed, and accuracy when applied to the existing Online Action Detection (OAD) dataset and the Nanjing University of Science and Technology 3 Dimensions (NJUST3D) dataset. TAD-Net can meet the actual needs of the digital twin shop-floor. Conclusions: Our method has higher recognition accuracy, temporal positioning accuracy, and faster running speed than other mainstream network models, it can better meet actual application requirements, and has important research value and practical significance for standardizing shop-floor production processes, reducing production security risks, and contributing to the understanding of real-time production action.


2008 ◽  
Vol 8 (4) ◽  
pp. 789-794 ◽  
Author(s):  
J. Vila ◽  
R. Ortiz ◽  
M. Tárraga ◽  
R. Macià ◽  
A. García ◽  
...  

Abstract. This paper presents the development and applications of a software-based quality control system that monitors volcano activity in near-real time. On the premise that external seismic manifestations provide information directly related to the internal status of a volcano, here we analyzed variations in background seismic noise. By continuous analysis of variations in seismic waveforms, we detected clear indications of changes in the internal status. The application of this method to data recorded in Villarrica (Chile) and Tungurahua (Ecuador) volcanoes demonstrates that it is suitable to be used as a forecasting tool. A recent application of this developed software-based quality control to the real-time monitoring of Teide – Pico Viejo volcanic complex (Spain) anticipated external episodes of volcanic activity, thus corroborating the advantages and capacity of the methodology when implemented as an automatic real-time procedure.


2021 ◽  
Author(s):  
W.-Z. Xiong ◽  
X.-M. Shen ◽  
H.-J. Li ◽  
Z. Shen

Abstract Real-time prediction of traffic flow values in a short period of time is an importantelement in building a traffic management system. The uncertainty, complexity andnonlinearity of traffic flow data make it difficult to predict traffic flow in real time,and the accurate traffic flow prediction has been an urgent problem in the industry.Based on the research of scholars, a traffic flow prediction model based on thecorrelation vector machine method is constructed. The prediction accuracy of thecorrelation vector machine is better than that of the logistic regression and supportvector machine methods, and the correlation vector machine method has the functionof generating prediction error range for the actual traffic sequence data. Theprediction results are very satisfactory, and the prediction speed is significantlyfaster than the other two models, which meets the requirement of real-time trafficflow prediction and is suitable for real-time online prediction, and the predictionaccuracy of the used method is relatively high. The three-way comparison analysisshows that the traffic flow prediction by the correlation vector machine methodcan describe the nonlinear characteristics of traffic flow change more accurately,and the model performance and real-time performance are better. The case studyshows that the traffic flow prediction model based on the correlation vector machinecan improve the speed and accuracy of prediction, which is very suitablefor traffic flow prediction estimation with real-time requirements, and provides ascientific method for real-time traffic flow measurement.


2021 ◽  
Vol 26 (43) ◽  
Author(s):  
Maximilian Muenchhoff ◽  
Alexander Graf ◽  
Stefan Krebs ◽  
Caroline Quartucci ◽  
Sandra Hasmann ◽  
...  

Background In the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data. Aim We applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata. Methods We investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission. Results We identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions. Conclusions Early spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12129
Author(s):  
Paul E. Oluniyi ◽  
Fehintola Ajogbasile ◽  
Judith Oguzie ◽  
Jessica Uwanibe ◽  
Adeyemi Kayode ◽  
...  

Next generation sequencing (NGS)-based studies have vastly increased our understanding of viral diversity. Viral sequence data obtained from NGS experiments are a rich source of information, these data can be used to study their epidemiology, evolution, transmission patterns, and can also inform drug and vaccine design. Viral genomes, however, represent a great challenge to bioinformatics due to their high mutation rate and forming quasispecies in the same infected host, bringing about the need to implement advanced bioinformatics tools to assemble consensus genomes well-representative of the viral population circulating in individual patients. Many tools have been developed to preprocess sequencing reads, carry-out de novo or reference-assisted assembly of viral genomes and assess the quality of the genomes obtained. Most of these tools however exist as standalone workflows and usually require huge computational resources. Here we present (Viral Genomes Easily Analyzed), a Snakemake workflow for analyzing RNA viral genomes. VGEA enables users to map sequencing reads to the human genome to remove human contaminants, split bam files into forward and reverse reads, carry out de novo assembly of forward and reverse reads to generate contigs, pre-process reads for quality and contamination, map reads to a reference tailored to the sample using corrected contigs supplemented by the user’s choice of reference sequences and evaluate/compare genome assemblies. We designed a project with the aim of creating a flexible, easy-to-use and all-in-one pipeline from existing/stand-alone bioinformatics tools for viral genome analysis that can be deployed on a personal computer. VGEA was built on the Snakemake workflow management system and utilizes existing tools for each step: fastp (Chen et al., 2018) for read trimming and read-level quality control, BWA (Li & Durbin, 2009) for mapping sequencing reads to the human reference genome, SAMtools (Li et al., 2009) for extracting unmapped reads and also for splitting bam files into fastq files, IVA (Hunt et al., 2015) for de novo assembly to generate contigs, shiver (Wymant et al., 2018) to pre-process reads for quality and contamination, then map to a reference tailored to the sample using corrected contigs supplemented with the user’s choice of existing reference sequences, SeqKit (Shen et al., 2016) for cleaning shiver assembly for QUAST, QUAST (Gurevich et al., 2013) to evaluate/assess the quality of genome assemblies and MultiQC (Ewels et al., 2016) for aggregation of the results from fastp, BWA and QUAST. Our pipeline was successfully tested and validated with SARS-CoV-2 (n = 20), HIV-1 (n = 20) and Lassa Virus (n = 20) datasets all of which have been made publicly available. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA under the GNU General Public License.


2001 ◽  
Vol 75 (4) ◽  
pp. 1620-1631 ◽  
Author(s):  
Roland Zell ◽  
Malte Dauber ◽  
Andi Krumbholz ◽  
Andreas Henke ◽  
Eckhard Birch-Hirschfeld ◽  
...  

ABSTRACT Nucleotide sequencing and phylogenetic analysis of 10 recognized prototype strains of the porcine enterovirus (PEV) cytopathic effect (CPE) group I reveals a close relationship of the viral genomes to the previously sequenced strain F65, supporting the concept of a reclassification of this virus group into a new picornavirus genus. Also, nucleotide sequences of the polyprotein-encoding genome region or the P1 region of 28 historic strains and recent field isolates were determined. The data suggest that several closely related but antigenically and molecular distinct serotypes constitute one species within the proposed genus Teschovirus. Based on sequence data and serological data, we propose a new serotype with strain Dresden as prototype. This hitherto unrecognized serotype is closely related to porcine teschovirus 1 (PTV-1, former PEV-1), but induces type-specific neutralizing antibodies. Sequencing of field isolates collected from animals presenting with neurological disorders prove that other serotypes than PTV-1 may also cause polioencephalomyelitis of swine.


Sign in / Sign up

Export Citation Format

Share Document