scholarly journals Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Hee Kim ◽  
Kyu-Hee Hwang ◽  
Bao T. N. Dang ◽  
Minseob Eom ◽  
In Deok Kong ◽  
...  

AbstractPodocyte, the gatekeeper of the glomerular filtration barrier, is a primary target for growth factor and Ca2+ signaling whose perturbation leads to proteinuria. However, the effects of insulin action on store-operated Ca2+ entry (SOCE) in podocytes remain unknown. Here, we demonstrated that insulin stimulates SOCE by VAMP2-dependent Orai1 trafficking to the plasma membrane. Insulin-activated SOCE triggers actin remodeling and transepithelial albumin leakage via the Ca2+-calcineurin pathway in podocytes. Transgenic Orai1 overexpression in mice causes podocyte fusion and impaired glomerular filtration barrier. Conversely, podocyte-specific Orai1 deletion prevents insulin-stimulated SOCE, synaptopodin depletion, and proteinuria. Podocyte injury and albuminuria coincide with Orai1 upregulation at the hyperinsulinemic stage in diabetic (db/db) mice, which can be ameliorated by the suppression of Orai1-calcineurin signaling. Our results suggest that tightly balanced insulin action targeting podocyte Orai1 is critical for maintaining filter integrity, which provides novel perspectives on therapeutic strategies for proteinuric diseases, including diabetic nephropathy.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Anna Iervolino ◽  
Tim Lange ◽  
Florian Siegerist ◽  
Maximilian Schindler ◽  
Giovambattista Capasso ◽  
...  

Abstract Background and Aims The zebrafish is a powerful animal model to study the glomerular morphology and the function of the permselectivity of the glomerular filtration barrier. Since zebrafish larvae develop quickly and can be bred to transparency, in vivo observation of these animals is possible. At 48 hours post fertilization (dpf), zebrafish develop a single filtering glomerulus which is attached to a pair of renal tubules. Like in mammals, the glomerular filtration barrier consists of a fenestrated endothelium, the glomerular basement membrane (GBM) and interdigitating podocyte foot processes bridged by a molecularly conserved slit diaphragm. By the use of genetically modified zebrafish strains with fluorescently labeled podocytes, it is possible to study alterations of the glomerulus during the development of renal disease directly in vivo and in vitro. As an injury model we used the nitroreductase/metronidazole (NTR/MTZ) zebrafish line to induce podocyte apoptosis and detachment from the GBM. Moreover, treatment of these larvae with MTZ induces glomerular injury that mimics focal segmental glomerulosclerosis (FSGS). The aim of our study was to establish a glomeruli isolation method which allows us to identify deregulation of miRNAs and mRNAs in the injured glomeruli by sequencing. Method The transgenic zebrafish strain Cherry (Tg(nphs2:Eco.nfsB-mCherry); mitfaw2/w2; mpv17a9/a9) which expresses the prokaryotic enzyme nitroreductase (NTR) fused to mCherry, a red fluorescent protein, under the control of the podocyte-specific podocin (nphs2) promoter in a transparent zebrafish strain, was used. The NTR/MTZ is a model of cell ablation to mimic podocyte injury. The prodrug MTZ (80 µM) is converted into a cytotoxin by NTR leading to a dose-dependent apoptosis exclusively in NTR-expressing podocytes. To induce podocyte injury, we treated Cherry larvae at 4 days post fertilization with MTZ (80 µM) freshly dissolved in 0.1% DMSO-E3 medium for 48 hours. Control larvae were treated with 0.1% DMSO-E3 medium. The treatment was stopped by a MTZ washout at 6 dpf. In order to perform the miRNA and mRNA sequencing on glomeruli isolated from MTZ-treated and control larvae we tried to establish a method to obtain total RNA samples of good quality. For this purpose, three different approaches were tested and validated: 1) Sieving method, 2) Fluorescence-Activated Cell Sorting method (FACS), and 3) manual isolation of glomeruli by using a micropipette. Results Zebrafish larvae developed a glomerular damage similar to FSGS after MTZ-treatment. MTZ-treated larvae showed severe pericardial edema, a reduction of the nephrin and podocin expression, proteinuria and an increased mortality rate at 8 dpf. After many tests we showed that glomeruli isolation using the sieving method and FACS were not efficient due to contaminations with other organs (sieving) and a loss of a large amount of cells per sample (FACS), respectively. Samples of the required quality for sequencing resulted only from the manual glomeruli isolation. Conclusion Here we describe methods to isolate fluorescent glomeruli from transgenic zebrafish larvae. For our studies, we used the NTZ/MTR kidney disease model in order to identify mRNAs and miRNAs regulated in response to glomerular damage. This technique will further allow to screen for healing drugs in high-throughput experiments.


2020 ◽  
Author(s):  
Sandrine Ettou ◽  
Youngsook L. Jung ◽  
Tomoya Miyoshi ◽  
Dhawal Jain ◽  
Ken Hiratsuka ◽  
...  

ABSTRACTIn the context of human disease, the mechanisms whereby transcription factors reprogram gene expression in response to injury are not well understood. This is particularly true in kidney podocytes, injury to which is the common and initial event in many processes that lead End Stage Kidney Disease. WT1 is a master regulator of gene expression in podocytes, binding nearly all genes known to be crucial for maintenance of the glomerular filtration barrier. Here, using purified populations of podocytes and glomeruli, we investigated WT1-mediated transcriptional reprogramming during the course of podocyte injury. Using the Adriamycin murine model of Focal Segmental Glomerulosclerosis, we discovered that podocyte injury led to increased intensity of WT1 binding and to the acquisition of new WT1 binding sites, both at previously identified target genes and at newly bound target genes, providing mechanistic insight on the transcriptional response to injury. We also observed a previously unrecognized transient increase in expression of WT1 target genes in both mice and human kidney organoids. Together, these features appear to constitute an attempt to repair the glomerular filtration barrier after podocyte injury. At later stages of injury, when proteinuria became severe, there was greatly decreased WT1 binding to most target genes. Furthermore, WT1 appeared to be required to maintain active chromatin marks at its target genes. These active marks were converted to repressive marks after loss of WT1 or Adriamycin-induced injury. This response to injury suggests that there may be a potential window of opportunity for repairing podocyte injury as a treatment for glomerular disease in humans.


2021 ◽  
Vol 10 (6) ◽  
pp. 1184
Author(s):  
Qisheng Lin ◽  
Khadija Banu ◽  
Zhaohui Ni ◽  
Jeremy S. Leventhal ◽  
Madhav C. Menon

Autophagy is a protective mechanism that removes dysfunctional components and provides nutrition for cells. Podocytes are terminally differentiated specialized epithelial cells that wrap around the capillaries of the glomerular filtration barrier and show high autophagy level at the baseline. Here, we provide an overview of cellular autophagy and its regulation in homeostasis with specific reference to podocytes. We discuss recent data that have focused on the functional role and regulation of autophagy during podocyte injury in experimental and clinical glomerular diseases. A thorough understanding of podocyte autophagy could shed novel insights into podocyte survival mechanisms with injury and offer potential targets for novel therapeutics for glomerular disease.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1815
Author(s):  
Jan Boeckhaus ◽  
Oliver Gross

Hereditary diseases of the glomerular filtration barrier are characterized by a more vulnerable glomerular basement membrane and dysfunctional podocytes. Recent clinical trials have demonstrated the nephroprotective effect of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in chronic kidney disease (CKD). SGLT2-mediated afferent arteriole vasoconstriction is hypothesized to correct the hemodynamic overload of the glomerular filtration barrier in hereditary podocytopathies. To test this hypothesis, we report data in a case series of patients with Alport syndrome and focal segmental glomerulosclerosis (FSGS) with respect of the early effect of SGLT2i on the kidney function. Mean duration of treatment was 4.5 (±2.9) months. Mean serum creatinine before and after SGLT-2i initiation was 1.46 (±0.42) and 1.58 (±0.55) mg/dL, respectively, with a median estimated glomerular filtration rate of 64 (±27) before and 64 (±32) mL/min/1.73 m2 after initiation of SGLT2i. Mean urinary albumin-creatinine ratio in mg/g creatinine before SGLT-2i initiation was 1827 (±1560) and decreased by almost 40% to 1127 (±854) after SGLT2i initiation. To our knowledge, this is the first case series on the effect and safety of SGLT2i in patients with hereditary podocytopathies. Specific large-scale trials in podocytopathies are needed to confirm our findings in this population with a tremendous unmet medical need for more effective, early on, and safe nephroprotective therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cleo C. L. van Aanhold ◽  
Manon Bos ◽  
Katrina M. Mirabito Colafella ◽  
Marie-Louise P. van der Hoorn ◽  
Ron Wolterbeek ◽  
...  

AbstractThe endothelial glycoprotein thrombomodulin regulates coagulation, vascular inflammation and apoptosis. In the kidney, thrombomodulin protects the glomerular filtration barrier by eliciting crosstalk between the glomerular endothelium and podocytes. Several glomerular pathologies are characterized by a loss of glomerular thrombomodulin. In women with pre-eclampsia, serum levels of soluble thrombomodulin are increased, possibly reflecting a loss from the glomerular endothelium. We set out to investigate whether thrombomodulin expression is decreased in the kidneys of women with pre-eclampsia and rats exposed to an angiogenesis inhibitor. Thrombomodulin expression was examined using immunohistochemistry and qPCR in renal autopsy tissues collected from 11 pre-eclamptic women, 22 pregnant controls and 11 hypertensive non-pregnant women. Further, kidneys from rats treated with increasing doses of sunitinib or sunitinib in combination with endothelin receptor antagonists were studied. Glomerular thrombomodulin protein levels were increased in the kidneys of women with pre-eclampsia. In parallel, in rats exposed to sunitinib, glomerular thrombomodulin was upregulated in a dose-dependent manner, and the upregulation of glomerular thrombomodulin preceded the onset of histopathological changes. Selective ETAR blockade, but not dual ETA/BR blockade, normalised the sunitinib-induced increase in thrombomodulin expression and albuminuria. We propose that glomerular thrombomodulin expression increases at an early stage of renal damage induced by antiangiogenic conditions. The upregulation of this nephroprotective protein in glomerular endothelial cells might serve as a mechanism to protect the glomerular filtration barrier in pre-eclampsia.


2016 ◽  
Vol 311 (6) ◽  
pp. F1308-F1317 ◽  
Author(s):  
Leopoldo Raij ◽  
Runxia Tian ◽  
Jenny S. Wong ◽  
John C. He ◽  
Kirk N. Campbell

Podocytes are the key target for injury in proteinuric glomerular diseases that result in podocyte loss, progressive focal segmental glomerular sclerosis (FSGS), and renal failure. Current evidence suggests that the initiation of podocyte injury and associated proteinuria can be separated from factors that drive and maintain these pathogenic processes leading to FSGS. In nephrotic urine aberrant glomerular filtration of plasminogen (Plg) is activated to the biologically active serine protease plasmin by urokinase-type plasminogen activator (uPA). In vivo inhibition of uPA mitigates Plg activation and development of FSGS in several proteinuric models of renal disease including 5/6 nephrectomy. Here, we show that Plg is markedly increased in the urine in two murine models of proteinuric kidney disease associated with podocyte injury: Tg26 HIV-associated nephropathy and the Cd2ap −/− model of FSGS. We show that human podocytes express uPA and three Plg receptors: uPAR, tPA, and Plg-RKT. We demonstrate that Plg treatment of podocytes specifically upregulates NADPH oxidase isoforms NOX2/NOX4 and increases production of mitochondrial-dependent superoxide anion (O2−) that promotes endothelin-1 synthesis. Plg via O2− also promotes expression of the B scavenger receptor CD36 and subsequent increased intracellular cholesterol uptake resulting in podocyte apoptosis. Taken together, our findings suggest that following disruption of the glomerular filtration barrier at the onset of proteinuric disease, podocytes are exposed to Plg resulting in further injury mediated by oxidative stress. We suggest that chronic exposure to Plg could serve as a “second hit” in glomerular disease and that Plg is potentially an attractive target for therapeutic intervention.


2009 ◽  
Vol 20 (7) ◽  
pp. 1533-1543 ◽  
Author(s):  
Nina Jones ◽  
Laura A. New ◽  
Megan A. Fortino ◽  
Vera Eremina ◽  
Julie Ruston ◽  
...  

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Torsten Kirsch ◽  
Jessica Kaufeld ◽  
Ron Korstanje ◽  
Dirk Hentschel ◽  
Hermann Haller ◽  
...  

The bioavailability of nitric oxide (NO) has been associated with the development and progression of vascular and renal disease. NOSTRIN (for eNOS Traffic Inducer) has primarily been recognized as one important regulator of eNOS, the prime source of NO in the cardiovascular system, with a possible role in the pathogenesis of pre-eclampsia and the development of increased intrahepatic resistance in liver disease. Here, we identified NOSTRIN in the center of a QTL-overlap region in rat and human trait loci that are associated with hypertension. Glomerular NOSTRIN expression is detectable in podocytes in human and rat glomeruli and podocytic NOSTRIN expression is diminished in hypertensive kidney disease. We show that knockdown of NOSTRIN alters the glomerular filtration barrier function in larval zebrafish, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial as well as epithelial side and the GBM of the glomerular capillary loop. We also demonstrate that NOSTRIN interacts with proteins associated with the podocyte slit membrane. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease related alteration of NOSTRIN expression may not only affect the vascular endothelium and therefore contribute to endothelial cell dysfunction but may also contribute to the development of podocyte disease and proteinuria.


Sign in / Sign up

Export Citation Format

Share Document