scholarly journals Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raphael F. Queiroz ◽  
Christopher P. Stanley ◽  
Kathryn Wolhuter ◽  
Stephanie M. Y. Kong ◽  
Ragul Rajivan ◽  
...  

AbstractDuring systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that ‘escapes’ effective reductive inactivation to engage in selective oxidative activation of key target proteins.

1989 ◽  
Vol 67 (2) ◽  
pp. 556-562 ◽  
Author(s):  
D. W. Kamp ◽  
K. D. Bauer ◽  
A. Knap ◽  
M. M. Dunn

Leukocyte adherence to endothelial cells (EC) is an important early event in inflammatory responses, which are often characterized by a predominance of either neutrophils (PMN) or monocytes. However, there is little information concerning the molecular events important in leukocyte adherence to EC. Intracellular activation of protein kinase C and the calcium-second messenger system leads to the stimulation of a number of important functions in PMN and monocytes. We compared the effects of members of these pathways on human PMN and monocyte adherence to cultured bovine aortic EC. We observed that phorbol myristate acetate, phorbol, 12,13-dibutyrate, L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, and ionomycin each induced significant dose-dependent increases in PMN adherence to EC monolayers. In contrast, similar concentrations of each of these agents induced significant decreases in EC adherence of monocytes enriched by countercurrent centrifugal elutriation. Separate experiments determined that the differences in PMN and monocyte adherence to EC were not related to differences in oxidant production because 1) phorbol myristate acetate and L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol caused similar marked increases in both PMN and monocyte superoxide anion and hydrogen peroxide production and 2) ionomycin, which had opposing effects on PMN and monocyte adherence, had no effect on PMN and monocyte superoxide anion or hydrogen peroxide release. We conclude that activators of protein kinase C and the Ca-second messenger pathway have opposite effects on PMN and monocyte adherence to EC and that these effects are mediated by O2 radical-independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 71 ◽  
pp. 143-156 ◽  
Author(s):  
Amanda W. Wyatt ◽  
Joern R. Steinert ◽  
Giovanni E. Mann

Nitric oxide (NO) is synthesized from l-arginine, and in endothelial cells influx of l-arginine is mediated predominantly via Na+-independent cationic amino acid transporters. Constitutive, Ca2+-calmodulin-sensitive eNOS (endothelial nitric oxide synthase) metabolizes l-arginine to NO and l-citrulline. eNOS is present in membrane caveolae and the cytosol and requires tetrahydrobiopterin, NADPH, FAD and FMN as additional cofactors for its activity. Supply of l-arginine for NO synthesis appears to be derived from a membrane-associated compartment distinct from the bulk intracellular amino acid pool, e.g. near invaginations of the plasma membrane referred to as 'lipid rafts' or caveolae. Co-localization of eNOS and the cationic amino acid transport system y+ in caveolae in part explains the 'arginine paradox', related to the phenomenon that in certain disease states eNOS requires an extracellular supply of l-arginine despite having sufficient intracellular l-arginine concentrations. Vasoactive agonists normally elevate [Ca2+]i (intracellular calcium concentration) in endothelial cells, thus stimulating NO production, whereas fluid shear stress, 17ϐ-oestradiol and insulin cause phosphorylation of the serine/threonine protein kinase Akt/protein kinase B in a phosphoinositide 3-kinase-dependent manner and activation of eNOS at basal [Ca2+]i levels. Adenosine causes an acute activation of p42/p44 mitogen-activated protein kinase and NO release, with membrane hyperpolarization leading to increased system y+ activity in fetal endothelial cells. In addition to acute stimulatory actions of D-glucose and insulin on l-arginine transport and NO synthesis, gestational diabetes, intrauterine growth retardation and pre-eclampsia induce phenotypic changes in the fetal vasculature, resulting in alterations in the l-arginine/NO signalling pathway and regulation of [Ca2+]i. These alterations may have significant implications for long-term programming of the fetal cardiovascular system.


2014 ◽  
Vol 306 (6) ◽  
pp. C559-C569 ◽  
Author(s):  
R. Scott Stephens ◽  
Laura E. Servinsky ◽  
Otgonchimeg Rentsendorj ◽  
Todd M. Kolb ◽  
Alexander Pfeifer ◽  
...  

Oxidant injury contributes to acute lung injury (ALI). We previously reported that activation of protein kinase GI(PKGI) posttranscriptionally increased the key antioxidant enzymes catalase and glutathione peroxidase 1 (Gpx-1) and attenuated oxidant-induced cytotoxicity in mouse lung microvascular endothelial cells (MLMVEC). The present studies tested the hypothesis that the antioxidant effect of PKGIis mediated via inhibition of the c-Abl tyrosine kinase. We found that activation of PKGIwith the cGMP analog 8pCPT-cGMP inhibited c-Abl activity and decreased c-Abl expression in wild-type but not PKGI−/−MLMVEC. Treatment of wild-type MLMVEC with atrial natriuretic peptide also inhibited c-Abl activation. Moreover, treatment of MLMVEC with the c-Abl inhibitor imatinib increased catalase and GPx-1 protein in a posttranscriptional fashion. In imatinib-treated MLMVEC, there was no additional effect of 8pCPT-cGMP on catalase or GPx-1. The imatinib-induced increase in antioxidant proteins was associated with an increase in extracellular H2O2scavenging by MLMVEC, attenuation of oxidant-induced endothelial barrier dysfunction, and prevention of oxidant-induced endothelial cell death. Finally, in the isolated perfused lung, imatinib prevented oxidant-induced endothelial toxicity. We conclude that cGMP, through activation of PKGI, inhibits c-Abl, leading to increased key antioxidant enzymes and resistance to lung endothelial oxidant injury. Inhibition of c-Abl by active PKGImay be the downstream mechanism underlying PKGI-mediated antioxidant signaling. Tyrosine kinase inhibitors may represent a novel therapeutic approach in oxidant-induced ALI.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Nabanita Bhattacharyya ◽  
Irene Nailain Nkumama ◽  
Zaccheus Newland-Smith ◽  
Li-Ying Lin ◽  
Wen Yin ◽  
...  

ABSTRACTSignaling by serine/threonine phosphorylation controls diverse processes in bacteria, and identification of the stimuli that activate protein kinases is an outstanding question in the field. Recently, we showed that nutrients stimulate phosphorylation of the protein kinase G substrate GarA inMycobacterium smegmatisandMycobacterium tuberculosisand that the action of GarA in regulating central metabolism depends upon whether it is phosphorylated. Here we present an investigation into the mechanism by which nutrients activate PknG. Two unknown genes were identified as co-conserved and co-expressed with PknG: their products were a putative lipoprotein, GlnH, and putative transmembrane protein, GlnX. Using a genetic approach, we showed that the membrane protein GlnX is functionally linked to PknG. Furthermore, we determined that the ligand specificity of GlnH matches the amino acids that stimulate GarA phosphorylation. We determined the structure of GlnH in complex with different amino acid ligands (aspartate, glutamate, and asparagine), revealing the structural basis of ligand specificity. We propose that the amino acid concentration in the periplasm is sensed by GlnH and that protein-protein interaction allows transmission of this information across the membrane via GlnX to activate PknG. This sensory system would allow regulation of nutrient utilization in response to changes in nutrient availability. The sensor, signaling, and effector proteins are conserved throughout theActinobacteria, including the important human pathogenMycobacterium tuberculosis, industrial amino acid producerCorynebacterium glutamicum, and antibiotic-producingStreptomycesspecies.IMPORTANCETuberculosis (TB) kills 5,000 people every day, and the prevalence of multidrug-resistant TB is increasing in every country. The processes by which the pathogenMycobacterium tuberculosissenses and responds to changes in its environment are attractive targets for drug development. Bacterial metabolism differs dramatically between growing and dormant cells, and these changes are known to be important in pathogenesis of TB. Here, we used genetic and biochemical approaches to identify proteins that allowM. tuberculosisto detect amino acids in its surroundings so that it can regulate its metabolism. We have also shown how individual amino acids are recognized. The findings have broader significance for other actinobacterial pathogens, such as nontuberculous mycobacteria, as well asActinobacteriaused to produce billions of dollars of amino acids and antibiotics every year.


Sign in / Sign up

Export Citation Format

Share Document