scholarly journals Multi-decadal increase of forest burned area in Australia is linked to climate change

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Josep G. Canadell ◽  
C. P. Meyer ◽  
Garry D. Cook ◽  
Andrew Dowdy ◽  
Peter R. Briggs ◽  
...  

AbstractFire activity in Australia is strongly affected by high inter-annual climate variability and extremes. Through changes in the climate, anthropogenic climate change has the potential to alter fire dynamics. Here we compile satellite (19 and 32 years) and ground-based (90 years) burned area datasets, climate and weather observations, and simulated fuel loads for Australian forests. Burned area in Australia’s forests shows a linear positive annual trend but an exponential increase during autumn and winter. The mean number of years since the last fire has decreased consecutively in each of the past four decades, while the frequency of forest megafire years (>1 Mha burned) has markedly increased since 2000. The increase in forest burned area is consistent with increasingly more dangerous fire weather conditions, increased risk factors associated with pyroconvection, including fire-generated thunderstorms, and increased ignitions from dry lightning, all associated to varying degrees with anthropogenic climate change.

2016 ◽  
Vol 29 (14) ◽  
pp. 5251-5265 ◽  
Author(s):  
Robert J. Trapp ◽  
Kimberly A. Hoogewind

Abstract This research seeks to answer the basic question of how current-day extreme tornadic storm events might be realized under future anthropogenic climate change. The pseudo global warming (PGW) methodology was adapted for this purpose. Three contributions to the CMIP5 archive were used to obtain the mean 3D atmospheric state simulated during May 1990–99 and May 2090–99. The climate change differences (or Δs) in temperature, relative humidity, pressure, and winds were added to NWP analyses of three high-end tornadic storm events, and this modified atmospheric state was then used for initial and boundary conditions for real-data WRF Model simulations of the events at high resolution. Comparison of an ensemble of these simulations with control simulations (CTRL) facilitated assessment of PGW effects. In contrast to the robust development of supercellular convection in each CTRL, the combined effects of increased convective inhibition (CIN) and decreased parcel lifting under PGW led to a failure of convection initiation in many of the experiments. Those experiments that had sufficient matching between the CIN and lifting tended to generate stronger convective updrafts than CTRL, although not in proportion to the projected higher levels of convective available potential energy (CAPE) under PGW. In addition, the experiments with enhanced updrafts also tended to have enhanced vertical rotation. In fact, such supercellular convection was even found in simulations that were driven with PGW-reduced environmental wind shear. Notably, the PGW modifications did not induce a change in the convective morphology in any of the PGW experiments with significant convective storminess.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zbigniew Zając ◽  
Joanna Kulisz ◽  
Aneta Woźniak ◽  
Katarzyna Bartosik ◽  
Adil Khan

AbstractDermacentor reticulatus ticks are one of the most important vectors and reservoirs of tick-borne pathogens in Europe. Changes in the abundance and range of this species have been observed in the last decade and these ticks are collected in areas previously considered tick-free. This may be influenced by progressive climate change. Eastern Poland is an area where the local population of D. reticulatus is one of the most numerous among those described so far. At the same time, the region is characterized by a significant increase in the mean air temperature in recent years (by 1.81 °C in 2020) and a decrease in the average number of days with snow cover (by 64 days in 2020) and in the number of days with frost (by 20 days in 2020) on an annual basis compared to the long-term average. The aim of our research was to investigate the rhythms of seasonal activity and the population size of D. reticulatus in the era of progressive climate change. To this end, questing ticks were collected in 2017–2020. Next, the weather conditions in the years of observation were analyzed and compared with multi-year data covering 30 years preceding the study. The research results show that, in eastern Poland, there is a stable population of D. reticulatus with the peak of activity in spring or autumn (up to a maximum of 359 individuals within 30 min of collection) depending on the year of observation. Ticks of this species may also be active in winter months. The activity of D. reticulatus is influenced by a saturation deficit.


2020 ◽  
Vol 46 (10) ◽  
pp. 1167-1181 ◽  
Author(s):  
Maeve Cooke

The most fundamental challenge facing humans today is the imminent destruction of the life-generating and life-sustaining ecosystems that constitute the planet Earth. There is considerable evidence that the strongest contemporary ecological threat is anthropogenic climate change resulting from the increasing warming of the atmosphere, caused by cumulative CO2 and other emissions as a result of collective human activity over the past few 100 years. This process of climate change is reinforced by further ecological problems such as pollution of land, air and sea, depletion of resources, land degradation and the loss of biodiversity. The name gaining currency for this emerging epoch of instability in the Earth’s eco-systems is the Anthropocene. Anthropogenic climate change calls for a categorical shift in thinking about the place of humanity in these systems and requires fundamental rethinking of ethics and politics. What would an appropriate ethical frame for politics in the Anthropocene look like? In response to this question, I sketch a proposal for an ethically non-anthropocentric ethics. I draw on early Frankfurt School Critical Theorists, and on Habermas, but move beyond these theorists in key respects.


2020 ◽  
Author(s):  
Simon Clarke

<p>YouTube is the world's second largest search engine, and serves as a primary source of entertainment for billions of people around the world. Yet while science communication on the website is more popular than ever, discussion of climate science is dominated by - largely scientifically untrained - individuals who are skeptical of the overwhelming scientific consensus that anthropogenic climate change is real. Over the past ten years I have built up an extensive audience communicating science - and climate science in particular - on YouTube, attempting to place credible science in the forefront of the discussion. In this talk I will discuss my approach to making content for the website, dissect successful and less successful projects, review feedback from my audience, and break down my process of converting research into entertaining, educational video content.</p>


2019 ◽  
Vol 60 ◽  
pp. C109-C126 ◽  
Author(s):  
Joshua Hartigan ◽  
Shev MacNamara ◽  
Lance M Leslie

Motivated by the Millennium Drought and the current drought over much of southern and eastern Australia, this detailed statistical study compares trends in annual wet season precipitation and temperature between a coastal site (Newcastle) and an inland site (Scone). Bootstrap permutation tests reveal Scone precipitation has decreased significantly over the past 40 years (p-value=0.070) whereas Newcastle has recorded little to no change (p-value=0.800). Mean maximum and minimum temperatures for Newcastle have increased over the past 40 years (p-values of 0.002 and 0.015, respectively) while the mean maximum temperature for Scone has increased (p-value = 0.058) and the mean minimum temperature has remained stable. This suggests mean temperatures during the wet season for both locations are increasing. Considering these trends along with those for precipitation, water resources in the Hunter region will be increasingly strained as a result of increased evaporation with either similar or less precipitation falling in the region. Wavelet analysis reveals that both sites have similar power spectra for precipitation and mean maximum temperature with a statistically significant signal in the two to seven year period, typically indicative of the El-Nino Southern Oscillation climate driver. The El-Nino Southern Oscillation also drives the Newcastle mean minimum temperature, whereas the Scone power spectra has no indication of a definitive driver for mean minimum temperature. References R. A., R. L. Kitching, F. Chiew, L. Hughes, P. C. D. Newton, S. S. Schuster, A. Tait, and P. Whetton. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment of the Intergovernmental Panel on Climate Change. Technical report, Intergovernmental Panel on Climate Change, 2014. URL https://www.ipcc.ch/report/ar5/wg2/. Bureau of Meteorology. Climate Glossary-Drought. URL http://www.bom.gov.au/climate/glossary/drought.shtml. K. M. Lau and H. Weng. Climate signal detection using wavelet transform: How to make a time series sing. B. Am. Meteorol. Soc., 76:23912402, 1995. doi:10.1175/1520-0477(1995)0762391:CSDUWT>2.0.CO;2. M. B. Richman and L. M. Leslie. Uniqueness and causes of the California drought. Procedia Comput. Sci., 61:428435, 2015. doi:10.1016/j.procs.2015.09.181. M. B. Richman and L. M. Leslie. The 20152017 Cape Town drought: Attribution and prediction using machine learning. Procedia Comput. Sci., 140:248257, 2018. doi:10.1016/j.procs.2018.10.323.


2020 ◽  
Vol 30 (4) ◽  
pp. 224-232
Author(s):  
Yasaman Borghei ◽  
Mohammad Taghi Moghadamnia ◽  
Abdolhossein Emami Sigaroudi ◽  
Ehsan Kazemnezhad Leili

Introduction: Climate change, which affects human health, is one of the most important public health concerns. Few studies have examined the effects of humidity and atmospheric pressure as risk factors on the cardiac system and Out-of-hospital Cardiac Arrest. Objective: This study aimed to determine the relationship between climatic variables (humidity and atmospheric pressure) with Out-of-hospital Cardiac Arrest , and its outcome over 3 years (2016-2018). Materials and Methods: This is an ecological time-series study. Participants were 392 patients with Out-of-hospital Cardiac Arrest referred to Hospital in Rasht City, Iran from 2016 to 2018. Meteorological data and information related to Out-of-hospital Cardiac Arrest and its consequences were collected from reliable resources and were analyzed in R software. Results: Low humidity increased the relative risk of Out-of-hospital Cardiac Arrest (OR=1.54, 95%CI: 1.001-2.69, P=0.001) and failed cardiopulmonary resuscitation (OR=1.76, 95% CI; 1.006-3.79, P=0.001). Higher atmospheric pressure was associated with increased risk of Out-of-hospital Cardiac Arrest (OR=1.16, 95%CI; 1.001-1.78, P=0.001) and unsuccessful cardiopulmonary resuscitation (OR=1.039, 95% CI; 1.005-1.91, P=0.001). Conclusion: Decreased humidity and increased atmospheric pressure are associated with an increased number of Out-of-hospital Cardiac Arrest cases and failure of cardiopulmonary resuscitation. Informing people with cardiovascular disease to avoid such weather conditions, as well as preparing the medical care team and designing early warning systems, can reduce the adverse effects of climate change on the heart.


2016 ◽  
Vol 66 (1) ◽  
pp. 2
Author(s):  
Scott B. Power ◽  
Jeff Callaghan

Millions of Australians live in a 1500 km stretch of coastal catchments in south-east Australia. Major flooding in this region causes death, economic loss and major disruptions to the lives of its inhabitants. Concerns have been raised that anthropogenic climate change might lead, or has already led, to an increased risk of extreme rainfall and associated flooding. Images of flooding commonly appear in the media, fuelling perceptions that flood frequency has already in-creased. Here we use a new dataset that allows us to estimate reliable trends over much longer periods than has previously been the case. The statistical significance of the trends is assessed using a method that is suitable for the non-Gaussian, serially correlated flood frequency data. We identify a statistically significant, increasing trend in the frequency of major floods since the late 19th century, which contributes to a 50% increase in frequency. While possible reasons for the increase are discussed (e.g. land use change, anthropogenic climate change, natural climate variability), further research is needed to clarify the relative importance of possible contributors.


2015 ◽  
Vol 12 (3) ◽  
pp. 3177-3209 ◽  
Author(s):  
M. L. Chipman ◽  
V. Hudspith ◽  
P. E. Higuera ◽  
P. A. Duffy ◽  
R. Kelly ◽  
...  

Abstract. Anthropogenic climate change has altered many ecosystem processes in the Arctic tundra and may have resulted in unprecedented fire activity. Evaluating the significance of recent fires requires knowledge from the paleo-fire record because observational data in the Arctic span only several decades, much shorter than the natural fire rotation in Arctic tundra regions. Here we report results of charcoal analysis on lake sediments from four Alaskan lakes to infer the broad spatial and temporal patterns of tundra fire occurrence over the past 35 000 years. Background charcoal accumulation rates are low in all records (range = 0–0.05 pieces cm-2 year-1), suggesting minimal biomass burning across our study areas. Charcoal peak analysis reveals that the mean fire return interval (FRI; years between consecutive fire events) ranged from 1648 to 6045 years at our sites, and that the most recent fire events occurred from 882 to 7031 years ago, except for the CE 2007 Anaktuvuk River Fire. These mean FRI estimates are longer than the fire rotation periods estimated for the past 63 years in the areas surrounding three of the four study lakes. This result suggests that the frequency of tundra burning was higher over the recent past compared to the late Quaternary in some tundra regions. However, the ranges of FRI estimates from our paleo-fire records overlap with the expected values based on fire-rotation-period estimates from the observational fire data, and thus quantitative differences are not significant. Together with previous tundra-fire reconstructions, these data suggest that the rate of tundra burning was spatially variable and that fires were extremely rare in our study areas throughout the late Quaternary. Given the rarity of tundra burning over multiple millennia in our study areas and the pronounced effects of fire on tundra ecosystem processes such as carbon cycling, dramatic tundra ecosystem changes are expected if anthropogenic climate change leads to more frequent tundra fires.


2016 ◽  
Vol 3 (3) ◽  
pp. 205-207 ◽  
Author(s):  
Alf Hornborg ◽  
Andreas Malm

Daniel Cunha misreads us as suggesting that climate change has been a conscious and deliberate strategy of a global elite. This was very clearly not our suggestion. He proposes that the Marxian concept of fetishism is applicable to anthropogenic climate change, apparently unaware of our recurrent use of precisely this concept in a number of publications over the past decades. We thus fundamentally agree with his position, but find his critique of our own interpretation of the Anthropocene unfair and misdirected.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-jin Zhan ◽  
Lingjun Xia ◽  
Longfei Zhan ◽  
Yuanhao Wang

Trends in soil temperature are important but rarely reported indicators of climate change. Based on daily air and soil temperatures (depth: 0, 20, 80, and 320 cm) recorded at the Nanchang Weather Station (1961–2018), this study investigated the variation trend, abrupt changes, and years of anomalous annual and seasonal mean air and soil temperatures. The differences and relationships between annual air and soil temperatures were also analyzed. The results showed close correlations between air temperature and soil temperature at different depths. Annual and seasonal mean air and soil temperatures mainly displayed significant trends of increase over the past 58 years, although the rise of the mean air temperature and the mean soil temperature was asymmetric. The rates of increase in air temperature and soil temperature (depth: 0, 20, and 80 cm) were most obvious in spring; the most significant increase in soil temperature at the depth of 320 cm was in summer. Mean soil temperature displayed a decreasing trend with increasing soil depth in both spring and summer. Air temperature was lower than the soil temperature at depths of 0 and 20 cm but higher than the soil temperature at depths of 80 and 320 cm in spring and summer. Mean ground temperature had a rising trend with increasing soil depth in autumn and winter. Air temperature was lower than the soil temperature at all depths in autumn and winter. Years with anomalously low air temperature and soil temperature at depths of 0, 20, 80, and 320 cm were relatively consistent in winter. Years with anomalous air and soil temperatures (depths: 0, 20, and 80 cm) were generally consistent; however, the relationship between air temperature and soil temperature at 320 cm depth was less consistent. The findings provide a basis for understanding and assessing climate change impact on terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document