scholarly journals Assessing costs of Indonesian fires and the benefits of restoring peatland

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Kiely ◽  
D. V. Spracklen ◽  
S. R. Arnold ◽  
E. Papargyropoulou ◽  
L. Conibear ◽  
...  

AbstractDeforestation and drainage has made Indonesian peatlands susceptible to burning. Large fires occur regularly, destroying agricultural crops and forest, emitting large amounts of CO2 and air pollutants, resulting in adverse health effects. In order to reduce fire, the Indonesian government has committed to restore 2.49 Mha of degraded peatland, with an estimated cost of US$3.2-7 billion. Here we combine fire emissions and land cover data to estimate the 2015 fires, the largest in recent years, resulted in economic losses totalling US$28 billion, whilst the six largest fire events between 2004 and 2015 caused a total of US$93.9 billion in economic losses. We estimate that if restoration had already been completed, the area burned in 2015 would have been reduced by 6%, reducing CO2 emissions by 18%, and PM2.5 emissions by 24%, preventing 12,000 premature mortalities. Peatland restoration could have resulted in economic savings of US$8.4 billion for 2004–2015, making it a cost-effective strategy for reducing the impacts of peatland fires to the environment, climate and human health.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicky R. Faber ◽  
Gus R. McFarlane ◽  
R. Chris Gaynor ◽  
Ivan Pocrnic ◽  
C. Bruce A. Whitelaw ◽  
...  

AbstractInvasive species are among the major driving forces behind biodiversity loss. Gene drive technology may offer a humane, efficient and cost-effective method of control. For safe and effective deployment it is vital that a gene drive is both self-limiting and can overcome evolutionary resistance. We present HD-ClvR in this modelling study, a novel combination of CRISPR-based gene drives that eliminates resistance and localises spread. As a case study, we model HD-ClvR in the grey squirrel (Sciurus carolinensis), which is an invasive pest in the UK and responsible for both biodiversity and economic losses. HD-ClvR combats resistance allele formation by combining a homing gene drive with a cleave-and-rescue gene drive. The inclusion of a self-limiting daisyfield gene drive allows for controllable localisation based on animal supplementation. We use both randomly mating and spatial models to simulate this strategy. Our findings show that HD-ClvR could effectively control a targeted grey squirrel population, with little risk to other populations. HD-ClvR offers an efficient, self-limiting and controllable gene drive for managing invasive pests.


2020 ◽  
Author(s):  
Huiling Xu ◽  
Yanli Wang ◽  
Guangwei Han ◽  
Weihuan Fang ◽  
fang he

Abstract Background: Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. Results: A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralization antibodies against both genotypes 1 and 2 CSFV with E2ZJ was detected than other E2s with the same dosage. Further, in piglets, E2ZJ successfully elicited neutralizing immunity. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. Conclusions: Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets. Keywords: Classical swine fever virus; novel signal peptide; SPZJ-E2ZJ; subunit vaccine; protective immunity


2017 ◽  
Vol 86 (1) ◽  
pp. 22-23
Author(s):  
Josiah Marquis ◽  
Meriem Benlamri ◽  
Elizabeth Dent ◽  
Tharmitha Suyeshkumar

Almost half of the Canadian landscape is made up of forests, but the amount of forest surface area burned every year has been growing steadily since 1960.1 This can be problematic due to the effects that forest fires have not only on the local environment but also on the globe as a whole. A forest fire or vegetation fire is defined as any open fire of vegetation such as savannah, forest, agriculture, or peat that is initiated by humans or nature.2 Vegetation fires contribute heavily to air pollution and climate change and are in turn exacerbated by them as well. Air pollution increases due to emissions from these fires, which contain 90-95% carbon dioxide and carbon monoxide as well as methane and other volatile compounds.2 Emissions from forest fires also contribute to global greenhouse gases and aerosol particles (biomass burning organic aerosols),2 leading to indirect and direct consequences to human health. In contrast to biomass burning for household heating and cooking, catastrophic events of forest fires and sweeping grassland fires result in unique exposures and health consequences. In this case report, the relationship between environmental hazardous air pollutants and the potential physiological and psychological health effects associated with the forest fire that affected Fort McMurray, AB in May 2016 are considered.


2020 ◽  
Vol 21 (9) ◽  
pp. 3317
Author(s):  
Efstratios Nikolaivits ◽  
Andreas Agrafiotis ◽  
Eirini Baira ◽  
Géraldine Le Goff ◽  
Nikolaos Tsafantakis ◽  
...  

2,4-Dichlorophenol (2,4-DCP) is a ubiquitous environmental pollutant categorized as a priority pollutant by the United States (US) Environmental Protection Agency, posing adverse health effects on humans and wildlife. Bioremediation is proposed as an eco-friendly, cost-effective alternative to traditional physicochemical remediation techniques. In the present study, fungal strains were isolated from marine invertebrates and tested for their ability to biotransform 2,4-DCP at a concentration of 1 mM. The most competent strains were studied further for the expression of catechol dioxygenase activities and the produced metabolites. One strain, identified as Tritirachium sp., expressed high levels of extracellular catechol 1,2-dioxygenase activity. The same strain also produced a dechlorinated cleavage product of the starting compound, indicating the assimilation of the xenobiotic by the fungus. This work also enriches the knowledge about the mechanisms employed by marine-derived fungi in order to defend themselves against chlorinated xenobiotics.


2002 ◽  
Vol 11 (2) ◽  
pp. 131 ◽  
Author(s):  
Eric S. Kasischke ◽  
David Williams ◽  
Donald Barry

Analyses of the patterns of fire in Alaska were carried out using three different data sets, including a large-fire database dating back to 1950. Analyses of annual area burned statistics illustrate the episodic nature of fire in Alaska, with most of the area burning during a limited number of high fire years. Over the past 50 years, high fire years occurred once every 4 years. Seasonal fire statistics indicated that high fire years consist of larger fire events that occur later in the growing season. On a decadal basis, average annual area burned has varied little between the 1960s and 1990s. Using a geographic information system (GIS), the spatial distribution of fires (aggregated by ecoregions) was compared with topographic, vegetation cover, and climate features of Alaska. The use of topographic data allows for a more realistic determination of fire cycle by eliminating areas where fires do not occur due to lack of vegetation above the treeline. Geographic analyses show that growing season temperature, precipitation, lightning strike frequency, elevation, aspect, and the level of forest cover interact in a complex fashion to control fire frequency.


1983 ◽  
Vol 9 (6) ◽  
pp. 505-513
Author(s):  
W.H. Medeiros ◽  
P.D. Moskowitz

2013 ◽  
Vol 664 ◽  
pp. 207-210 ◽  
Author(s):  
Ying Han ◽  
Li Fen Yi

There is a great improvement in modern people’s working and living environment. As the new building materials and technology appear, it brings some problems to indoor environment. more and more people pay attention to their living conditions especially the quality of indoor environment. Every year ,there are 110,000 people who die from indoor air pollution every year in China, hence indoor air pollution is affecting human health. In this paper, through analysis of the sources, adverse health effects of several common indoor air pollutants, air pollutants are major contributing factors to chronic diseases and mortality. It should be treated urgently with the people’s standard of living improvement.


2005 ◽  
Vol 35 (4) ◽  
pp. 772-786 ◽  
Author(s):  
S G Cumming

Fire suppression is (functionally) effective insofar as it reduces area burned. In North American boreal forests, fire regimes and historical records are such that this effect cannot be detected or estimated directly. I present an indirect approach, proceeding from the practice of initial attack (IA), which is intended to limit the proportion of "large" fires. I analysed IA's (operational) effectiveness by a controlled retrospective study of fire-history data for an approximately 86 000 km2 region of boreal forest in northeastern Alberta, Canada, from 1968 to 1998 (31 years). Over this interval, various improvements to IA practice, including a 1983 change in management strategy, created a natural experiment. I tested the results with multiple logistic regression models of the annual probabilities of a fire becoming larger than 3 and 200 ha. Annual fire counts (Nt) were a surrogate for fire weather and peak daily counts within years (arrival load). Measured by odds ratios, mean IA effectiveness against 3- and 200-ha fires increased in 1983 by factors of 2.02 (95% CI = 1.70–2.40) and 2.41 (95% CI = 1.69–3.45), respectively. Prior to 1983, the functional response to Nt was consistent with saturation of IA capacity at high arrival loads. From 1983–1998, effectiveness was independent of Nt. I introduce the proportional reduction in area burned (impact) as a measure of functional effectiveness and state conditions under which it can be estimated from the regression models. Over 1983–1998, if suppressed and actual fires were comparable, relative IA impact ([Formula: see text]) was 0.58 (95% CI = 0.34–0.74) and area burned was reduced by 457 500 ha. If fires larger than 1 × 105, 1 × 104, or 1 × 103 ha are assumed to be unpreventable, [Formula: see text] declines to 0.46, 025, or 0.08, respectively, but there is no evidence this is the case.


2020 ◽  
Author(s):  
Lauri Ikkala ◽  
Hannu Marttila ◽  
Anna-Kaisa Ronkanen ◽  
Jari Ilmonen ◽  
Maarit Similä ◽  
...  

<p>Peatlands are globally threatened by the increasing exploitation. Majority of peatlands in Finland are <em>severely degraded </em>by land use and drainage activities. <strong>Peatland restoration</strong> is an effective way to increase biodiversity, return natural function of peatlands in catchment hydrology and reduce negative impacts of drainage.</p><p>Restoration activities recover the wet and open habitats crucial for many valuable species and peatlands ability to store water and nutrients. Restoration activates peat forming processes, and thus reduces greenhouse gas (GHG) emissions and returns peatlands to act as carbon sinks.</p><p><em>Restored sites are monitored</em> to determine whether the restoration has succeeded and to gather the experiences to further develop restoration methods. The traditional restoration monitoring demands intensive field work with high labor costs and special ecological expertise. Evaluation is mainly based on visual assessment at present. In addition, monitoring typically cannot cover the entire restored site.</p><p>There is strong need to develop unbiased indicators and new cost-effective methods producing <em>spatially representative high-quality information on restoration success</em>. We will study new technical possibilities for evaluation of peatland restoration success with unmanned aerial systems (UAS).</p><p>The latest image processing techniques and their use in mapping and analyzing peatland areas are to be studied. UAS provides prospects not only to ease the demanding restoration field work but also to transform the discrete nature of conventional single data points into a spatial continuum over the whole restored peatland.</p>


Sign in / Sign up

Export Citation Format

Share Document