scholarly journals Vacuum laser acceleration of super-ponderomotive electrons using relativistic transparency injection

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. K. Singh ◽  
F.-Y. Li ◽  
C.-K. Huang ◽  
A. Moreau ◽  
R. Hollinger ◽  
...  

AbstractIntense lasers can accelerate electrons to very high energy over a short distance. Such compact accelerators have several potential applications including fast ignition, high energy physics, and radiography. Among the various schemes of laser-based electron acceleration, vacuum laser acceleration has the merits of super-high acceleration gradient and great simplicity. Yet its realization has been difficult because injecting free electrons into the fast-oscillating laser field is not trivial. Here we demonstrate free-electron injection and subsequent vacuum laser acceleration of electrons up to 20 MeV using the relativistic transparency effect. When a high-contrast intense laser drives a thin solid foil, electrons from the dense opaque plasma are first accelerated to near-light speed by the standing laser wave in front of the solid foil and subsequently injected into the transmitted laser field as the opaque plasma becomes relativistically transparent. It is possible to further optimize the electron injection/acceleration by manipulating the laser polarization, incident angle, and temporal pulse shaping. Our result also sheds light on the fundamental relativistic transparency process, crucial for producing secondary particle and light sources.

2019 ◽  
Vol 9 (13) ◽  
pp. 2626 ◽  
Author(s):  
Bernhard Hidding ◽  
Andrew Beaton ◽  
Lewis Boulton ◽  
Sebastién Corde ◽  
Andreas Doepp ◽  
...  

Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA) and particle-driven plasma wakefield acceleration (PWFA) are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch) or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.


2010 ◽  
Vol 6 (S272) ◽  
pp. 581-586
Author(s):  
Guillaume Dubus ◽  
Benoît Cerutti

Abstractγ-ray binaries are systems that emit most of their radiative power above 1 MeV. They are associated with O or Be stars in orbit with a compact object, possibly a young pulsar. Much like colliding wind binaries, the pulsar generates a relativistic wind that interacts with the stellar wind. The result is non-thermal emission from radio to very high energy γ-rays. The wind, radiation and magnetic field of the massive star play a major role in the dynamics and radiative output of the system. They are particularly important to understand the high energy physics at work. Inversely, γ-ray binaries offer novel probes of stellar winds and insights into the fate of O/B binaries.


Author(s):  
D.A Jaroszynski ◽  
R Bingham ◽  
E Brunetti ◽  
B Ersfeld ◽  
J Gallacher ◽  
...  

Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1 GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5 fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.


1989 ◽  
Vol 231 (1-2) ◽  
pp. 43-48 ◽  
Author(s):  
Luca Amendola ◽  
Marco Litterio ◽  
Franco Occhionero

2020 ◽  
Vol 86 (4) ◽  
Author(s):  
J. Pétri

Kinetic plasma simulations are nowadays commonly used to study a wealth of nonlinear behaviours and properties in laboratory and space plasmas. In particular, in high-energy physics and astrophysics, the plasma usually evolves in ultra-strong electromagnetic fields produced by intense laser beams for the former or by rotating compact objects such as neutron stars and black holes for the latter. In these ultra-strong electromagnetic fields, the gyro-period is several orders of magnitude smaller than the time scale on which we desire to investigate the plasma evolution. Some approximations are required such as, for instance, artificially decreasing the electromagnetic field strength, which is certainly not satisfactory. The main flaw of this downscaling is that it cannot reproduce particle acceleration to ultra-relativistic speeds with a Lorentz factor above $\gamma \approx 10^3$ – $10^4$ . In this paper, we design a new algorithm able to catch particle motion and acceleration to a Lorentz factor of up to $10^{15}$ or even higher by using Lorentz boosts to special frames where the electric and magnetic field are parallel. Assuming that these fields are locally uniform in space and constant in time, we solve analytically the equation of motion in a tiny region smaller than the length scale of the spatial and temporal gradient of the field. This analytical integration of the orbit severely reduces the constraint on the time step, allowing us to use large time steps, avoiding resolving the ultra-high gyro-frequency. We performed simulations in ultra-strong spatially and time-dependent electromagnetic fields, showing that our particle pusher is able to follow accurately the exact analytical solution for very long times. This property is crucial to properly capture for instance lepton electrodynamics in electromagnetic waves produced by fast rotating neutron stars. We conclude with a simple implementation of our new pusher into a one-dimensional relativistic electromagnetic particle-in-cell code, testing it against plasma oscillations, two-stream instabilities and strongly magnetized relativistic shocks.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. S. Sefiedgar

The appearance of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of Friedmann-Robertson-Walker (FRW) universe. The modified dispersion relation (MDR) as a phenomenological approach to investigate the high energy physics provides a perturbation framework upon which the FRW universe thermodynamics can be corrected. In this letter, we obtain the corrected entropy-area relation of the apparent horizon of FRW universe by utilizing the extra dimensional form of MDR, leading to the modification of Friedmann equations. The influence of MDR on the Friedmann equations provides a good insight into the understanding of the FRW universe dynamics in the final quantum gravity theory.


2020 ◽  
Vol 245 ◽  
pp. 02025
Author(s):  
Riccardo Farinelli

Triple-GEM detectors are gaseous devices used in high energy physics to measure the path of the particles which cross them. The characterisation of triple GEM detectors and the estimation of the performance for real data experiments require a complete comprehension of the mechanisms which transform the passage of one particle in the detector into electric signals, and dedicated MonteCarlo simulations are needed. In this work we will describe GTS (Garfield-based Triple-gem Simulator), a MonteCarlo code which has been developed to simulate the detector response to the passage of particles inside triple GEMs. The software takes into account the processes from the primary ionization up to the signal formation, e.g. avalanche multiplication and the effects of the diffusion in the gas volume. It uses a parametrization of the variables of interest meant to reproduce the same detector response (i.e. the charge distribution at the anode) as provided by Garfield++, a well known software that already performs this kind of simulation more detailed and therefore with a high CPU time consumption. In addition to the detector response, the simulation of the APV-25 electronics is implemented and the output is used to reconstruct the particle position with the Charge Centroid (CC) and the microTime Projection Chamber (µTPC) methods. A comparison of the simulated performance and the one collected in testbeams is used to tune the parameters used in GTS. Results in different conditions of incident angle will be shown.


Sign in / Sign up

Export Citation Format

Share Document