scholarly journals MnBi2Te4-family intrinsic magnetic topological materials

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ke He

AbstractMnBi2Te4 and its derivative compounds have received focused research interests recently for their inherent magnetic order and the rich, robust and tunable topological phases hosted in them. Here, I briefly introduce MnBi2Te4-family intrinsic magnetic topological materials—the electronic and magnetic properties, the topological phase diagrams and the research progress made on them in the past years. I try to present a simple picture to understand their rich electronic, magnetic and topological properties, and a concise guide to engineer them for intended topological phases and the quantum anomalous Hall effect at higher temperature.

2019 ◽  
Vol 13 (1-2) ◽  
pp. 95-115
Author(s):  
Brandon Plewe

Historical place databases can be an invaluable tool for capturing the rich meaning of past places. However, this richness presents obstacles to success: the daunting need to simultaneously represent complex information such as temporal change, uncertainty, relationships, and thorough sourcing has been an obstacle to historical GIS in the past. The Qualified Assertion Model developed in this paper can represent a variety of historical complexities using a single, simple, flexible data model based on a) documenting assertions of the past world rather than claiming to know the exact truth, and b) qualifying the scope, provenance, quality, and syntactics of those assertions. This model was successfully implemented in a production-strength historical gazetteer of religious congregations, demonstrating its effectiveness and some challenges.


2012 ◽  
Vol 18 (1) ◽  
Author(s):  
Hunud Abia Kadouf ◽  
Umar Aimhanosi Oseini ◽  
Ainul Jaria Maidin

The primary function of Ahmad Ibrahim Kulliyyah (Faculty) of Laws, at the very beginning of its inception, was that of teaching civil law and Sharî’ah subjects. As it matured, its vision has been varied from teaching to that of research with the aim of attaining the status of a full research institution that provides both quality research and best legal education in the region. Similar to other institutions of higher education in Malaysia, the responsibility of research is a shared function of both graduate students and the academic staff. The research output, on the part of the students is mostly composed of either Master Dissertations or PhD Theses. The academic members of the Faculty, however, are involved either in direct research, individually or jointly, supervision, and publications of their findings. By investigating and analyzing factors influencing research activities at AIKOL in the past twenty years, the researchers will be able to identify the general trends and development of research as it unfolded over years. The researchers hope that the policymakers, at both Faculty and University levels, will use the findings to improve research quality by boldly addressing the problems hampering research progress at AIKOL.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Wang ◽  
Xuepeng Wang ◽  
Yi-Fan Zhao ◽  
Di Xiao ◽  
Ling-Jie Zhou ◽  
...  

AbstractThe Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial “topological Hall effect”-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.


2020 ◽  
Author(s):  
Xinyang Li ◽  
Weixiao Ji ◽  
Peiji Wang ◽  
Chang-wen Zhang

Half-Dirac semimetals (HDSs), which possess 100% spin-polarizations for Dirac materials, are highly desirable for exploring various topological phases of matter, as low-dimensionality opens unprecedented opportunities for manipulating the quantum state...


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4018
Author(s):  
Hao Song ◽  
Xiaodong Ding ◽  
Zixian Cui ◽  
Haohao Hu

Acoustic metamaterials are materials with artificially designed structures, which have characteristics that surpass the behavior of natural materials, such as negative refraction, anomalous Doppler effect, plane focusing, etc. This article mainly introduces and summarizes the related research progress of acoustic metamaterials in the past two decades, focusing on meta-atomic acoustic metamaterials, metamolecular acoustic metamaterials, meta-atomic clusters and metamolecule cluster acoustic metamaterials. Finally, the research overview and development trend of acoustic metasurfaces are briefly introduced.


1987 ◽  
Vol 13 (2-3) ◽  
pp. 169-187
Author(s):  
Alexander Morgan Capron

In the past several decades, the problems facing those of us who labor in the vineyards of health policy and ethics have been the problems of success — first medicine's and then, though to a lesser extent, our own. By this I mean that it has been the remarkable fruits of biomedicine, from research to health care delivery, that have produced the rich harvest of ethical, social and legal issues that have drawn our, and society's, attention.In the basic science laboratory, scientists have developed means to splice pieces of DNA together, raising questions from workplace safety to the reengineering of homo sapiens. Of more immediate concern, tests for genetic susceptibility to disease in one's self and one's offspring have been developed, thereby generating questions about employment and insurance discrimination, selective abortion, and adverse impacts on self-identity and well-being.


2021 ◽  
Vol 35 ◽  
pp. 205873842110005
Author(s):  
Xia Ma ◽  
Meng Yang ◽  
Yan He ◽  
Chuntao Zhai ◽  
Chengliang Li

Tremella polysaccharide is known to be structurally unique and biologically active natural products, abundant and versatile in activities and applications in food industry, daily chemical industry and medicine industry. In order to improve the industrialisation of Tremella polysaccharide, the limitations of preparation and structure-activity relationship of Tremella polysaccharide were reviewed in this paper. The research progress of Tremella polysaccharide in the past 20 years was summarized from the sources, preparation methods, molecular structure, activity and application, and the research trend in the future was also prospected. The application prospect of Tremella polysaccharide in against multiple sub-health states was worth expecting.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Gilbert

AbstractWithin the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi2Se3 and Bi2Te3. In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Margaret M. Kane ◽  
Arturas Vailionis ◽  
Lauren J. Riddiford ◽  
Apurva Mehta ◽  
Alpha T. N’Diaye ◽  
...  

AbstractThe emergence of ferromagnetism in materials where the bulk phase does not show any magnetic order demonstrates that atomically precise films can stabilize distinct ground states and expands the phase space for the discovery of materials. Here, the emergence of long-range magnetic order is reported in ultrathin (111) LaNiO3 (LNO) films, where bulk LNO is paramagnetic, and the origins of this phase are explained. Transport and structural studies of LNO(111) films indicate that NiO6 octahedral distortions stabilize a magnetic insulating phase at the film/substrate interface and result in a thickness-dependent metal–insulator transition at t = 8 unit cells. Away from this interface, distortions relax and bulk-like conduction is regained. Synchrotron x-ray diffraction and dynamical x-ray diffraction simulations confirm a corresponding out-of-plane unit-cell expansion at the interface of all films. X-ray absorption spectroscopy reveals that distortion stabilizes an increased concentration of Ni2+ ions. Evidence of long-range magnetic order is found in anomalous Hall effect and magnetoresistance measurements, likely due to ferromagnetic superexchange interactions among Ni2+–Ni3+ ions. Together, these results indicate that long-range magnetic ordering and metallicity in LNO(111) films emerges from a balance among the spin, charge, lattice, and orbital degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document