scholarly journals Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Lee ◽  
L. H. Remark ◽  
A. M. Josephson ◽  
K. Leclerc ◽  
E. Muiños Lopez ◽  
...  

AbstractAdult bone regeneration is orchestrated by the precise actions of osteoprogenitor cells (OPCs). However, the mechanisms by which OPC proliferation and differentiation are linked and thereby regulated are yet to be defined. Here, we present evidence that during intramembranous bone formation OPC proliferation is controlled by Notch signaling, while differentiation is initiated by activation of canonical Wnt signaling. The temporospatial separation of Notch and Wnt signal activation during the early stages of bone regeneration suggests crosstalk between the two pathways. In vitro and in vivo manipulation of the two essential pathways demonstrate that Wnt activation leads to initiation of osteogenic differentiation and at the same time inhibits Notch signaling, which results in termination of the proliferative phase. Here, we establish canonical Wnt signaling as a key regulator that facilitates the crosstalk between OPC proliferation and differentiation during intramembranous, primary bone healing.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3928-3928
Author(s):  
Marina Bolzoni ◽  
Paola Storti ◽  
Daniela Guasco ◽  
Mirca Lazzaretti ◽  
Eugenia Martella ◽  
...  

Abstract Abstract 3928 Multiple Myeloma (MM) is characterized by the impairment of osteogenic differentiation of bone marrow (BM) mesenchymal stromal cells (BMSC) and osteoblast suppression. Canonical Wnt signal pathway is critical in the regulation of bone formation. However recent evidences suggest that non-canonical Wnt activation by Wnt5a, rather than canonical one by Wnt3a stimulates the osteogenic properties of BMSC. Non-canonical Wnt signaling, mainly activated by Wnt5a, is transduced through FZD receptor (FDZ5) and Ror2 co-receptor to several cascades such as Disheveled pathways involving the Rho family small GTPases or the Ca++ dependent pathways/PKC involving the nuclear factor of activated T cells (NFATc). Actually, the effect of MM cells on non-canonical Wnt signaling and the role of the activation of this pathway on MM-induced osteoblastic exhaustion are still unknown and have been investigated in this study. First we checked the expression of non-canonical Wnt related molecules by BMSC and osteoprogenitor cells (PreOB) and found that both cells expressed Wnt5a but lack of express Wnt1, Wnt3a and Wnt8. The presence of the Wnt5a receptors FZD2 and FZD5 was also detected in both cell types as well as of Ror2. Interestingly we found that osteogenic differentiation of BMSC towards preOB significantly increased Ror2 and FZD5 expression. Secondly, we performed a series of co-culture between PreOB and MM cells using either IL-6 dependent (XG-1), and independent (JJN3) human myeloma cell lines or purified primary CD138+ MM cells. We found that XG-1 and CD138+ MM cells inhibit Ror2 and FZD5 expression in PreOB and consistently the activity of NFATc1 at nuclear level. Thereafter the activation of non-canonical WNT pathway in PreOB, checked by the intracytoplasmatic increase of Ca++influx, phospho-PKC expression and NFATc1 activity, was induced either by Wnt5a treatment or by Wnt5a overexpression through a lentivirus vector. Ror2 overexpression was also performed by lentivirus vector in PreOB. The transcriptional profiles of both PreOB overexpressing Wnt5a and Ror2 have been evaluated by GeneChip® HG-U133Plus 2.0 arrays. The raw intensity signals were extracted from CEL files and normalized using the RMA package for Bioconductor and custom GeneAnnot-based Chip Definition Files in R software. We found that Wnt5a treatment as well as Wnt5a overexpression significantly increased osteogenic differentiation and the expression of the osteogenic markers alkaline phosphatase and collagen I in PreOB. Consistently with these observations, we also demonstrated that siRNA-mediated Wnt5a silencing inhibited these osteogenic markers in the same cell type. Moreover we found that the activation of non-canonical WNT signal pathway in PreOB, blunted the inhibitory effect of MM cells on the osteogenic differentiation process in co-culture. Finally, we show that Ror2 overespression in PreOB activated non-canonical Wnt signaling, increased osteogenic differentiation and restored the osteogenic properties of PreOB in co-culture with MM cells. In conclusion, our data indicate that activation of non-canonical Wnt5a/Ror2 pathway in BM osteoprogenitor cells increases osteogenic differentiation and counterbalances the inhibitory effect of MM cells suggesting that modulation of Wnt5/Ror2 pathway in the microenvironment could be a target for MM bone disease. Disclosures: Bolzoni: Celgene Italy: Research Funding. Giuliani:Celgene: Research Funding; Novartis: Research Funding.


2019 ◽  
Vol 98 ◽  
pp. 246-255 ◽  
Author(s):  
Chu-Chih Hung ◽  
Amy Chaya ◽  
Kai Liu ◽  
Konstantinos Verdelis ◽  
Charles Sfeir

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2742-2742 ◽  
Author(s):  
Nicola Giuliani ◽  
Simona Colla ◽  
Paola Storti ◽  
Gaetano Donofrio ◽  
Marina Bolzoni ◽  
...  

Abstract Osteoblast suppression is the hallmark of Multiple Myeloma (MM) osteolytic bone lesions mainly due to the capacity of MM cells to inhibit the osteogenic differentiation of bone marrow (BM) mesenchymal cells (MSC). Many evidences suggest that Wnt signaling is critically involved in the regulation of osteoblast formation. Recently, in murine osteoprogenitor cells and in MM mouse models it has been shown that activation of canonical Wnt pathway stimulate osteoblast formation and blunts MM-induced bone destruction. In this study we have investigated whether modulation of both canonical and noncanonical Wnt signaling pathway may affect osteogenic differentiation of human MSC and counterbalance the suppressive effect of MM cells. First we checked the potential expression of Wnt activators and inhibitors by human MSC and osteoprogenitor cells (PreOB) by gene arrays. We found that both cells expressed the activator of non-canonical Wnt pathways Wnt5a but lack of express the main activators of canonical Wnt signaling as Wnt1, Wnt3a and Wnt8. The presence of the Wnt5a receptor FZD2 and FZD5 was also detected in both cells as well as that of FZD3, FZD6 and FDZ7 and the Wnt canonical co-receptors LRP5 and LRP6. On the other hand we found that both inhibitors of canonical and non-canonical Wnt pathways DKK-1 and sFRP-1 were expressed by MSC. Secondly, activation of either canonical or non-canonical Wnt signaling pathway by Wnt3a and Wnt5a treatment respectively was performed in human MSC to evaluate the effect on osteogenic differentiation and the expression of osteoblast related markers (Collagen I, Osteocalcin and Alkaline Phosphatase). We found that Wnt5a treatment but not Wnt3a significantly increased the early osteogenic differentiation and the expression of alkaline phosphatase in MSC. Consistently in a co-culture system with MM cells Wnt5a treatment blunted, at least in part, the inhibitory effect of MM cells on alkaline phosphatase expression by MSC and PreOB. To go further inside, we evaluated in both primary human BM MSC and the human MSC cell line HS-5 the effect of either the activation of non-canonical Wnt signaling by Wnt5a overexpression using a lentivirus vector or the Wnt5a suppression using siRNA. Wnt5a over-expression in MSC induced the activation of Wnt/Ca++ non-canonical pathway as demonstrated by the increase of Wnt5a secretion and phospho-PKC expression detected by westernblot analysis. Consequently to non-canonical Wnt signal activation we found a significant increase of alkaline phosphatase expression by MSC cells as well as of their osteogenic differentiation. Interestingly, analyzing the gene expression profile by microarray, we found that Wnt5a overexpression in MSC also affects the expression of chemokines, inflammatory cytokines and pro-angiogenic molecules. In conclusion our data indicate that activation of non-canonical Wnt signal pathway may represent a potential target in MM microenvironment to counterbalance the inhibitory effect of MM cells on osteogenic differentiation of human MSC.


2016 ◽  
Vol 311 (6) ◽  
pp. L1036-L1049 ◽  
Author(s):  
Soula Danopoulos ◽  
Michael Krainock ◽  
Omar Toubat ◽  
Matthew Thornton ◽  
Brendan Grubbs ◽  
...  

Lung branching morphogenesis relies on a number of factors, including proper epithelial cell proliferation and differentiation, cell polarity, and migration. Rac1, a small Rho GTPase, orchestrates a number of these cellular processes, including cell proliferation and differentiation, cellular alignment, and polarization. Furthermore, Rac1 modulates both noncanonical and canonical Wnt signaling, important pathways in lung branching morphogenesis. Culture of embryonic mouse lung explants in the presence of the Rac1 inhibitor (NSC23766) resulted in a dose-dependent decrease in branching. Increased cell death and BrdU uptake were notably seen in the mesenchyme, while no direct effect on the epithelium was observed. Moreover, vasculogenesis was impaired following Rac1 inhibition as shown by decreased Vegfa expression and impaired LacZ staining in Flk1-Lacz reporter mice. Rac1 inhibition decreased Fgf10 expression in conjunction with many of its associated factors. Moreover, using the reporter lines TOPGAL and Axin2-LacZ, there was an evident decrease in canonical Wnt signaling in the explants treated with the Rac1 inhibitor. Activation of canonical Wnt pathway using WNT3a or WNT7b only partially rescued the branching inhibition. Moreover, these results were validated on human explants, where Rac1 inhibition resulted in impaired branching and decreased AXIN2 and FGFR2b expression. We therefore conclude that Rac1 regulates lung branching morphogenesis, in part through canonical Wnt signaling. However, the exact mechanisms by which Rac1 interacts with canonical Wnt in human and mouse lung requires further investigation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 608-608
Author(s):  
Michael Nemeth ◽  
Yingzi Yang ◽  
David Bodine

Abstract Normal function of adult hematopoietic stem cells (HSC) is dependent upon the bone marrow microenvironment, which is comprised of multiple cell types, including fibroblasts, endothelial cells, osteoblasts and stromal progenitors. We hypothesized that canonical Wnt signaling, which is necessary for the development of mesenchymal tissue, regulates the cellular structure and function of the microenvironment. We tested this hypothesis using an in vitro model of bone marrow stroma that is deficient in β-catenin, the critical transactivator of canonical Wnt signals. β-catenin−/ − Dexter stroma cultures were established from whole bone marrow harvested from β-cateninlox/lox Mx-cre+/cre mice treated with 7–10 doses of 300 μg pIpC. PCR analysis of stromal cell DNA showed nearly 100% deletion of β-catenin. Confluent stroma cultures were irradiated and seeded with 4 x 104 lin cells/cm2. We have reported (Nemeth, et al, Blood, 108, 29a) that β-catenin−/ − stroma exhibit decreased ability to support CFU formation and generate osteoblasts. The reduction in CFU-C correlates with a 75% increase in the percentage of lin− progenitors cultured on β-catenin−/ − stroma undergoing apoptosis (23.6 ± 3.4%) compared to wild-type (13.6 ± 1.3% ; n = 3; p < .01). To determine the mechanism by which canonical Wnt signaling regulates microenvironment function, we used a cytokine antibody array to analyze protein levels of 30 different hematopoietic growth factors and adhesion molecules. We observed decreased amounts of the soluble factors bFGF (3.3 ± 0.6-fold) and SCF (2.3 ± 0.3-fold), and the adhesion factor VCAM-1 (2.7 ± 0.3-fold) (n = 3; p < .01) in β-catenin−/ − stroma. The decrease in VCAM-1 corresponded with decreased percentages of VCAM-1+ osteoblasts (26.8 ± 0.9% vs. 43.9 ± 5.7%) and endothelial cells (31.6 ± 5.7% vs. 76.5 ± 10.9%) in β-catenin−/ − stroma compared to wild-type (n = 4, p < .01). From these data, we hypothesized that β-catenin is necessary for maintaining the stromal cells that support HSCs in vivo. We tested this hypothesis by transplanting 2 x 106 wild-type whole bone marrow cells (CD45.1) into lethally-irradiated β-cateninlox/lox Mx-cre+/cre mice and littermate controls. 8 weeks later, transplanted mice were treated with pIpC, resulting in mice with a wild-type hematopoietic system and a β-catenin−/ − microenvironment. Two weeks after the final treatment, we observed a 2.7 ± 0.1-fold reduction in the percentage of long- and short-term HSCs (lin−, c-kitHI, Sca-1HI) in bone marrow from mice with a β-catenin−/ − microenvironment compared to wild-type (n = 4, p < .05). We performed a competitive repopulation assay, transplanting 1 x 106 whole bone marrow cells harvested from primary recipients with a wild-type or β-catenin−/ − microenvironment with 1 x 106 CD45.2 whole bone marrow cells into lethally-irradiated secondary recipient mice. After 16 weeks, there was no difference in mean repopulation by bone marrow cells from the β-catenin−/ − microenvironment (9.2 ± 2.8%) compared to wild-type (10.7 ± 0.6%), indicating that self-renewal was unaffected. However, we did observe a significant 4-fold increase in variability of repopulation by bone marrow cells from the β-catenin−/ − microenvironment (F-test = .01). Since smaller numbers of HSCs will yield greater variability in repopulation than larger numbers, this is consistent with the observation that the β-catenin−/ − microenvironment supports fewer HSCs. From these data, we propose a model in which canonical Wnt signaling in the microenvironment is necessary for hematopoietic proliferation and differentiation.


Sign in / Sign up

Export Citation Format

Share Document