The impact of the Fukushima accident on nuclear power policy in Japan

Nature Energy ◽  
2021 ◽  
Author(s):  
Midori Aoyagi
2018 ◽  
Author(s):  
Wen Yu ◽  
Mathew P. Johansen ◽  
Jianhua He ◽  
Wu Men ◽  
Longshan Lin

Abstract. In order to better understand the impact of Fukushima Nuclear Power Plant (NPP) Accident on commercial marine species, squid (Ommastrephe bartrami) samples, obtained from the northwestern Pacific in November 2011, were analyzed for a range of artificial and natural radionuclides (Cs-134, Cs-137, Ag-110m, U-238, Ra-226 and K-40). Short-lived radionuclides Cs-134 and Ag-110m released from Fukushima NPP Accident were found in the samples, with an extremely high water-to-organism concentration ratio for Ag-110m (> 2.9E + 04). The radiological dose rates for the squid from the radionuclides measured were far lower than the relevant benchmark of 10 µGy h−1. For human consumers ingesting these squid, the dose contribution from natural radionuclides (> 99.9 %) including Po-210, was far greater than that of Fukushima-accident radionuclides (


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3925 ◽  
Author(s):  
Shinyoung Kwag ◽  
Jeong Gon Ha ◽  
Min Kyu Kim ◽  
Jung Han Kim

Probabilistic safety assessment (PSA) of nuclear facilities on external multi-hazards has become a major issue after the Fukushima accident in 2011. However, the existing external hazard PSA methodology is for single hazard events and cannot cover the impact of multi-hazards. Therefore, this study proposes a methodology for quantifying multi-hazard risks for nuclear energy plants. Specifically, we developed an efficient multi-hazard PSA methodology based on the probability distribution-based Boolean algebraic approach and sampling-based method, which are currently single-hazard PSA methodologies. The limitations of the probability distribution-based Boolean algebraic approach not being able to handle partial dependencies between the components are solved through this sampling-based method. In addition, we devised an algorithm that was more efficient than the existing algorithm for improving the limits of the current sampling-based method, as it required a significant computational time. The proposed methodology was applied from simple examples to single- and multi-hazard PSA examples of actual nuclear power plants. The results showed that the proposed methodology was verified in terms of accuracy and efficiency perspectives. Regarding the sampling-based method, it was confirmed that the proposed algorithm yielded fragility and risk results that have similar degrees of accuracy, even though it extracted a smaller number of samples than the existing algorithm.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Rocío Baró ◽  
Christian Maurer ◽  
Jerome Brioude ◽  
Delia Arnold ◽  
Marcus Hirtl

This paper demonstrates the environmental impacts of the wildfires occurring at the beginning of April 2020 in and around the highly contaminated Chernobyl Exclusion Zone (CEZ). Due to the critical fire location, concerns arose about secondary radioactive contamination potentially spreading over Europe. The impact of the fire was assessed through the evaluation of fire plume dispersion and re-suspension of the radionuclide Cs-137, whereas, to assess the smoke plume effect, a WRF-Chem simulation was performed and compared to Tropospheric Monitoring Instrument (TROPOMI) satellite columns. The results show agreement of the simulated black carbon and carbon monoxide plumes with the plumes as observed by TROPOMI, where pollutants were also transported to Belarus. From an air quality and health perspective, the wildfires caused extremely bad air quality over Kiev, where the WRF-Chem model simulated mean values of PM2.5 up to 300 µg/m3 (during the first fire outbreak) over CEZ. The re-suspension of Cs-137 was assessed by a Bayesian inverse modelling approach using FLEXPART as the atmospheric transport model and Ukraine observations, yielding a total release of 600 ± 200 GBq. The increase in both smoke and Cs-137 emissions was only well correlated on the 9 April, likely related to a shift of the focus area of the fires. From a radiological point of view even the highest Cs-137 values (average measured or modelled air concentrations and modelled deposition) at the measurement site closest to the Chernobyl Nuclear Power Plant, i.e., Kiev, posed no health risk.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 816
Author(s):  
Rosa Lo Frano

The impact of an aircraft is widely known to be one of the worst events that can occur during the operation of a plant (classified for this reason as beyond design). This can become much more catastrophic and lead to the loss of strength of/collapse of the structures when it occurs in the presence of ageing (degradation and alteration) materials. Therefore, since the performance of all plant components may be affected by ageing, there is a need to evaluate the effect that aged components have on system performance and plant safety. This study addresses the numerical simulation of an aged Nuclear Power Plant (NPP) subjected to a military aircraft impact. The effects of impact velocity, direction, and location were investigated together with the more unfavorable conditions to be expected for the plant. The modelling method was also validated based on the results obtained from the experiments of Sugano et al., 1993. Non-linear analyses by means of finite element (FE) MARC code allowed us to simulate the performance of the reinforced concrete containment building and its impact on plant availability and reliability. The results showed that ageing increases a plant’s propensity to suffer damage. The damage at the impact area was confirmed to be dependent on the type of aircraft involved and the target wall thickness. The greater the degradation of the materials, the lower the residual resistance capacity, and the greater the risk of wall perforation.


Kerntechnik ◽  
2021 ◽  
Vol 86 (2) ◽  
pp. 152-163
Author(s):  
T.-C. Wang ◽  
M. Lee

Abstract In the present study, a methodology is developed to quantify the uncertainties of special model parameters of the integral severe accident analysis code MAAP5. Here, the in-vessel hydrogen production during a core melt accident for Lungmen Nuclear Power Station of Taiwan Power Company, an advanced boiling water reactor, is analyzed. Sensitivity studies are performed to identify those parameters with an impact on the output parameter. For this, multiple calculations of MAAP5 are performed with input combinations generated from Latin Hypercube Sampling (LHS). The results are analyzed to determine the 95th percentile with 95% confidence level value of the amount of in-vessel hydrogen production. The calculations show that the default model options for IOXIDE and FGBYPA are recommended. The Pearson Correlation Coefficient (PCC) was used to determine the impact of model parameters on the target output parameters and showed that the three parameters TCLMAX, FCO, FOXBJ are highly influencing the in-vessel hydrogen generation. Suggestions of values of these three parameters are given.


Author(s):  
Michio Murakami ◽  
Takao Nirasawa ◽  
Takao Yoshikane ◽  
Keisuke Sueki ◽  
Kimikazu Sasa ◽  
...  

Evaluation of radiation exposure from diet is necessary under the assumption of a virtual accident as a part of emergency preparedness. Here, we developed a model with complete consideration of the regional food trade using deposition data simulated by a transport model, and estimated the dietary intake of radionuclides and the effectiveness of regulation (e.g., restrictions on the distribution of foods) after the Fukushima accident and in virtual accident scenarios. We also evaluated the dilution factors (i.e., ratios of contaminated foods to consumed foods) and cost-effectiveness of regulation as basic information for setting regulatory values. The doses estimated under actual emission conditions were generally consistent with those observed in food-duplicate and market-basket surveys within a factor of three. Regulation of restricted food distribution resulted in reductions in the doses of 54–65% in the nearest large city to the nuclear power plant. The dilution factors under actual emission conditions were 4.4% for radioiodine and 2.7% for radiocesium, which are ~20 times lower than those used in the Japanese provisional regulation values after the Fukushima accident. Strict regulation worsened the cost-effectiveness for both radionuclides. This study highlights the significance and utility of the developed model for a risk analysis of emergency preparedness and regulation.


Author(s):  
Wei Gao ◽  
Guofeng Tang ◽  
Jingyu Zhang ◽  
Qinfang Zhang

Seismic risk of nuclear power plant has drawn increasing attention after Fukushima accident. An intensive study has been carried out in this paper, including sampling of component and structure fragility based on Monte Carlo method, fragility analysis on system or plant level, convolution of seismic hazard curves and fragility curves. To derive more accurate quantification results, the binary decision diagram (BDD) algorithm was introduced into the quantification process, which effectively reduces the deficiency of the conventional method on coping with large probability events and negated logic. Seismic Probabilistic Safety Analysis (PSA/PRA) quantification software was developed based on algorithms discussed in this paper. Tests and application has been made for this software with a specific nuclear power plant seismic PSA model. The results show that this software is effective on seismic PSA quantification.


Sign in / Sign up

Export Citation Format

Share Document