scholarly journals Fluorescent RNA cytosine analogue – an internal probe for detailed structure and dynamics investigations

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Anders Foller Füchtbauer ◽  
Søren Preus ◽  
Karl Börjesson ◽  
Scott A. McPhee ◽  
David M. J. Lilley ◽  
...  
Langmuir ◽  
2003 ◽  
Vol 19 (25) ◽  
pp. 10468-10479 ◽  
Author(s):  
Fabien Aussenac ◽  
Michel Laguerre ◽  
Jean-Marie Schmitter ◽  
Erick J. Dufourc

2013 ◽  
Vol 41 (2) ◽  
pp. 494-500 ◽  
Author(s):  
Rosana Collepardo-Guevara ◽  
Tamar Schlick

The detailed structure and dynamics of the chromatin fibre and their relation to gene regulation represent important open biological questions. Recent advances in single-molecule force spectroscopy experiments have addressed these questions by directly measuring the forces that stabilize and alter the folded states of chromatin, and by investigating the mechanisms of fibre unfolding. We present examples that demonstrate how complementary modelling approaches have helped not only to interpret the experimental findings, but also to advance our knowledge of force-induced events such as unfolding of chromatin with dynamically bound linker histones and nucleosome unwrapping.


Author(s):  
Patrick Echlin

A number of papers have appeared recently which purport to have carried out x-ray microanalysis on fully frozen hydrated samples. It is important to establish reliable criteria to be certain that a sample is in a fully hydrated state. The morphological appearance of the sample is an obvious parameter because fully hydrated samples lack the detailed structure seen in their freeze dried counterparts. The electron scattering by ice within a frozen-hydrated section and from the surface of a frozen-hydrated fracture face obscures cellular detail. (Fig. 1G and 1H.) However, the morphological appearance alone can be quite deceptive for as Figures 1E and 1F show, parts of frozen-dried samples may also have the poor morphology normally associated with fully hydrated samples. It is only when one examines the x-ray spectra that an assurance can be given that the sample is fully hydrated.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1998 ◽  
Vol 77 (2) ◽  
pp. 357-362 ◽  
Author(s):  
A. Matic, L. Borjesson

Sign in / Sign up

Export Citation Format

Share Document