scholarly journals High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ashish K. Chaturvedi ◽  
Rajeev N. Bahuguna ◽  
Divya Shah ◽  
Madan Pal ◽  
S. V. Krishna Jagadish
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2021 ◽  
Author(s):  
Peng Zhu ◽  
Jennifer Burney

Abstract. Irrigation has important implications for sustaining global food production, enabling crop water demand to be met even under dry conditions. Added water also cools crop plants through transpiration; irrigation might thus play an important role in a warmer climate by simultaneously moderating water and high temperature stresses. Here we use satellite-derived evapotranspiration estimates, land surface temperature (LST) measurements, and crop phenological stage information from Nebraska maize to quantify how irrigation relieves both water and temperature stresses. Our study shows that, unlike air temperature metrics, satellite-derived LST detects significant irrigation-induced cooling effect, especially during the grain filling period (GFP) of crop growth. This cooling is likely to extend the maize growing season, especially for GFP, likely due to the stronger temperature sensitivity of phenological development during this stage. The analysis also suggests that irrigation not only reduces water and temperature stress but also weakens the response of yield to these stresses. Specifically, temperature stress is significantly weakened for reproductive processes in irrigated crops. The attribution analysis further suggests that water and high temperature stress alleviation contributes to 65 % and 35 % of yield benefit, respectively. Our study underlines the relative importance of high temperature stress alleviation in yield improvement and the necessity of simulating crop surface temperature to better quantify heat stress effects in crop yield models. Finally, untangling irrigation effects on both heat and water stress mitigation has important implications for designing agricultural adaptation strategies under climate change.


Plant Biology ◽  
1999 ◽  
Vol 1 (3) ◽  
pp. 365-371 ◽  
Author(s):  
T. Faria ◽  
M. Vaz ◽  
P. Schwanz ◽  
A. PolIe ◽  
J. S. Pereira ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 112
Author(s):  
T. Casey Barickman ◽  
Omolayo J. Olorunwa ◽  
Akanksha Sehgal ◽  
C. Hunt Walne ◽  
K. Raja Reddy ◽  
...  

Recent evidence suggests that the effects of temperature significantly affect the growth and development of basil plants with detrimental impacts on yield. The current research investigated the interactive effects of varying temperature and CO2 levels on the shoot and root morphology and growth of early and late-season basil plants. Basil plants were subjected to control (30/22 °C), low (20/12 °C), and high (38/30 °C) temperature under ambient (420 μL L−1) and elevated (720 μL L−1) CO2 concentrations. Decreasing the temperature to 20/12 °C caused more adverse effects on the morphological traits of the early-season basil. Relative to the control treatments, low- and high-temperature stresses decreased 71 and 14% in marketable fresh mass, respectively. Basil exhibited an increase in plant height, node and branch numbers, specific leaf area, anthocyanin and nitrogen balance index, root tips, and root crossings when subjected to high-temperature stress. Furthermore, elevated CO2 affected many morphological features compared to ambient CO2 concentrations. The findings of this study suggest that varying the growth temperature of basil plants would more significantly impact the shoot and root morphologies and growth rates of basil than increasing the CO2 concentrations, which ameliorated the adverse impacts of temperature stress.


2020 ◽  
Vol 47 (3) ◽  
pp. 248-254
Author(s):  
Usamah Jaisyurahman ◽  
Desta Wirnas ◽  
Trikoesoemaningtyas ◽  
Dan Heni Purnamawati

Global warming becomes a pressure in food production sustainability because it affected crop growth and development. The purpose of this study was to obtain information on the effect of high-temperature stress on the growth and development phase of rice and to evaluate the genotype for tolerance to high-temperature stress. Two environment conditions were used in the field and greenhouse of IPB Cikabayan experimental field, IPB University from August 2016 until February 2017. The study used varieties of IPB 4S, IPB 6R, Mekongga, and Situ Patenggang. High-temperature treatment was done by transferring the rice plants to the greenhouse at 50 days after transplanting. Observations were made on the generative phase in two different environmental conditions. The results showed that the total tillers number, filled grain number per panicle, unfilled grain number per panicle, total grain number per panicle, grain filling rate, percentage of filled grain and filled grain weight per plant had different responses among rice genotypes due to high-temperature stress. High-temperature decreased pollen fertility in all genotypes, which classified IPB 4S as a sensitive genotype and Mekongga as a tolerant genotype. This information could be useful for development and improving rice variety to anticipate high-temperature stress. Keywords: Climate change, fertility, pollen, stress tolerance index


2013 ◽  
Vol 32 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Kenta Shirasawa ◽  
Takuma Sekii ◽  
Yoshinori Ogihara ◽  
Teppei Yamada ◽  
Sachiko Shirasawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document