scholarly journals Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Oladapo O. Yeku ◽  
Terence J. Purdon ◽  
Mythili Koneru ◽  
David Spriggs ◽  
Renier J. Brentjens
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Linchun Jin ◽  
Alicia Hou ◽  
Haipeng Tao ◽  
Aida Karachi ◽  
Meng Na ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is a refractory brain tumor that desperately needs new therapeutic interventions. Our group identified CD70 as a novel target of CAR-T therapy for this malignancy. We demonstrate that CD70 is overexpressed by low-/high-grade gliomas and associated with poor survival for patients; CD70 promotes CD8 specific cell death and tumor-associated macrophage infiltration in gliomas. The CD70 CAR (using CD27, a natural costimulatory receptor of T cells as an antigen-binding region) T cells can efficiently eradicate CD70 positive tumors in syngeneic and xenograft mouse models. OBJECTIVE To evaluate the properties of CD70 CAR-transduced T cells in GBM treatment. METHODS CD70 CAR or IL13Rα2 CAR was linked with fluorescent reporter gene EGFP, and cloned into a retroviral vector (pMSGV8). In vitro T cell culture and flow cytometry were used to evaluate the self-enrichment property and susceptibility to TCR stimulation of the CAR T cells. KI67, Bcl-2, CD70 gene expression was tested by qPCR to measure the proliferation/apoptosis properties of the CAR T cells. Cytokine profile was analyzed by ELISA. The anti-tumor response was evaluated using Xenograft mouse models. RESULTS Compared with IL13Rα2 CAR T cells, the frequency of CD70 CAR T cells was significantly increased 3 weeks post transduction, and approximately 100 to 150-fold CD70 CAR T cell expansion without additional stimuli was achieved in vitro. The expanded CD70 CAR T cells were mostly (up to 85%) CD8+ T cells three weeks post CAR transduction. Enhanced proliferative capacity and production of IL-2, IFN-γ, and TNF-α of the CD70 CAR-transduced T cells upon anti-CD3/CD28 stimulation were also revealed. Results from animal models show that the CD70 CAR T cells present superior in vivo persistence and antitumor efficacy. CONCLUSION We show the auto-stimulative property, as well as superior T cell function and antitumor efficacy of CD70 CAR T cells in GBM models.


Angiogenesis ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Parvin Akbari ◽  
Elisabeth J. M. Huijbers ◽  
Maria Themeli ◽  
Arjan W. Griffioen ◽  
Judy R. van Beijnum

Abstract T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e19028-e19028 ◽  
Author(s):  
Tong Chen ◽  
Yan Yuan ◽  
Liansheng Huang ◽  
Chengfei Pu ◽  
Tianling Ding ◽  
...  

e19028 Background: The chimeric antigen receptor (CAR) T cell treatment has been demonstrated as an effective therapy to relapse/refractory B cell malignancy. However, tumor microenvironment influences and affects CAR T treatment. For example, programmed death ligand 1/2 (PDL1/2) may inhibit the CAR T cells via interaction with up-regulated Programmed cell death protein 1 (PD1) during T cells activation, suppressing the tumor-killing capability of the CAR T cells. Thus, blockade of the PD1-PDL1/2 interaction may enhance the anti-tumor efficacy of CAR T therapy. Methods: We generated CAR T cells including an anti-CD19 second generation (2G) CAR molecule and a dominant negative PD1 molecule (Figure A). Compared with conventional CART cells, these “armored” CART cells show the enhanced capability of tumor killing after multiple-round tumor challenging and more “memory-like” phenotypes (Figure B). These results suggest dominant negative PD1 molecules may protect CART cells from exhaustion in the tumor microenvironment. Results: We report clinical trials of three refractory diffuse large B cell lymphomas (DLBCLs) patients that were successfully treated using the armored CAR T cells described above. All of these three patients failed to achieve response after multiple rounds of chemotherapy and radiotherapy. However, after infused with autologous CART cells at 5.23×10^6/kg and 1.97×10^6/kg, respectively, they showed significant tumor mass decrease and SUV max declines in PET/CT results and ongoing responses (e.g., from 34.48 to 3.89 at day 27, from 25.02 to 2.38 at day 31, respectively, see Figure C). Conclusions: These three clinical trials revealed the significant anti-bulky lymphoma response with respect to these armored CAR T cells and limited and tolerated cytokine release syndrome and central nervous system toxicity. Also, dominant negative PD1 molecules may augment CAR T cells persistence in patients after activation by lymphoma cells, thus enhancing the efficacy of CAR T cells in the treatment of hematomas. Finally, the techniques described herein are a platform technology and may be applied to other adoptive cellular immunotherapies such as TCR-T or TIL in the treatment of solid tumors. We are continuing to recruit more patients for the clinical trials. Clinical trial information: ChiCTR1900021295.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1032-1032
Author(s):  
Saisha Abhay Nalawade ◽  
Paul Shafer ◽  
Pradip Bajgain ◽  
Katie McKenna ◽  
Arushana Ali ◽  
...  

1032 Background: Successful targeting of solid tumors such as breast cancer (BC) using CAR T cells (CARTs) has proven challenging, largely due to the immune suppressive tumor microenvironment (TME). Myeloid derived suppressor cells (MDSCs) inhibit CART’s function and persistence within the breast TME. We generated CAR T cells targeting tumor-expressed mucin 1 (MUC1) (Bajgain P et al, 2018) for BC. To potentiate expansion and persistence of MUC1 CARTs and modulate the suppressive TME, we developed a novel chimeric co-stimulatory receptor, TR2.4-1BB, encoding a ScFv derived from a TNF-related apoptosis-inducing ligand receptor 2 (TR2) mAb followed by a 4-1BB endodomain. We hypothesize that engagement with TR2 expressed on TME-resident MDSCs, will lead to both MDSC apoptosis and CART co-stimulation, promoting T cell persistence and expansion at tumor site. Methods: Function of the novel TR2.4-1BB receptor, was assessed by exposing non-transduced (NT) and TR2.4-1BB transduced T cells to recombinant TR2 and nuclear translocation of NFκB was measured by ELISA. Functionality of in vitro generated MDSCs was determined by the suppression assay. In vitro CART/costimulatory receptor T cell function was measured by cytotoxicity assays using MUC1+ tumor targets in presence or absence of MDSCs. In vivo anti-tumor activity was assessed using MDSC enriched tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. Results: Nuclear translocation of NFκB was detected only in TR2.4-1BB T cells. MDSCs significantly attenuated T cell proliferation by 50±5% and IFNγ production by half compared with T cells cultured alone. Additionally, presence of MDSCs, diminished cytotoxic potential of MUC1 CARTs against MUC1+ BC cell lines by 25%. However, TR2.4-1BB expression on CAR.MUC1 T cells induced MDSC apoptosis thereby restoring the cytotoxic activity of CAR.MUC1 against MUC1+ BC lines in presence of TR2.4-1BB (67±8.5%). There was an approximate two-fold increase in tumor growth due enhanced angiogenesis and fibroblast accumulation in mice receiving tumors + MDSCs compared to tumors alone. Treatment of these MDSC-enriched tumors with MUC1.TR2.4-1BB CARTs led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared to CAR.MUC1 (469.79.9±81.46mm3) or TR2.4-1BB (434.86±64.25 mm3) T cells alone (Day 28 after T cell injection). The treatment also improved T cell proliferation and persistence at the tumor site. Thereby, leading to negligible metastasis demonstrating ability of CARTs to eliminate tumor and prevent dissemination. We observed similar results using HER2.TR2.4-1BB CARTs in a HER2+ BC model. Conclusions: Our findings demonstrate that CARTs co-expressing our novel TR2.4-1BB receptor have higher anti-tumor potential against BC tumors and infiltrating MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 192-192
Author(s):  
Adrienne H. Long ◽  
Rimas J. Orentas ◽  
Crystal L. Mackall

Abstract Introduction Chimeric antigen receptors (CARs) provide a promising new approach for the adoptive immunotherapy of cancer. Though impressive antitumor activity has been observed with some CAR T cells, other CAR T cells demonstrate poor antitumor efficacy in vivo despite high cytolytic capacity in vitro due to poor expansion and persistence. Whether exhaustion of CAR T cells mirrors exhaustion that occurs naturally in chronically stimulated human T cells has not yet been studied. Here, we report that expression of select CD28 containing CARs in normal human T cells rapidly induces an exhausted state characterized by high PD-1 expression, poor persistence and poor antitumor efficacy, whereas other CARs do not induce this phenotype. Results Human T cells were expanded with anti-CD3/CD28 beads, and then transduced with a second-generation (CD28-CD3ζ) disialoganglioside 2 (GD2) specific CAR or a second-generation (CD28-CD3ζ) CD19 specific CAR. By day 7 of in vitro expansion, GD2 CAR T cells developed a metabolism more highly dependent on glycolysis compared to CD19 CAR T cells or untransduced controls. Neither CAR population was exposed to antigen during this expansion period. Using a Seahorse Extracellular Flux Analyzer, the ratio of glycolysis to oxidative phosphorylation rates (ECAR:OCR ratio) of GD2 CAR T cells was found to be double that of CD19 CAR T cells or controls on day 7. The highly glycolytic metabolism of GD2 CAR T cells was associated with an exhausted phenotype. GD2 CAR T cells expressed higher levels of PD-1, TIM-3 and LAG-3, and transcription repressor BLIMP-1, compared to CD19 CAR T cells or untransduced controls. Additionally, GD2 CAR T cells were poor cytokine producers, generating <10x lower levels of IL2, TNFα and IFNγ than CD19 CAR T cells upon in vitro co-incubation with a GD2+CD19+ osteosarcoma line (143B-CD19), despite maintaining comparable in vitro cytolytic ability. GD2 CAR T cells showed poor in vitro expansion and increased rates of apoptosis compared to controls. GD2 CAR T cells also did not persist and did not mediate antitumor effects against GD2+CD19+ tumors in a murine xenograft model in vivo, whereas CD19 CAR T cells completely eradicated CD19+ tumors and persisted in both the spleen and tumor compartments. To rule out the possibility that diminished cytokine production and in vivo efficacy was related to antigen specific effects, T cells were co-transduced with both the GD2 and CD19 CARs. Though single-transduced CD19 CAR T cells show no signs of an altered metabolism or exhaustion and have strong antitumor efficacy, CD19 CAR T cells co-transduced with the GD2 CAR demonstrate an exhausted phenotype and diminished antitumor efficacy similar to that of single-transduced GD2 CAR T cells. Thus, expression of the GD2 CAR confers a dominant exhausted phenotype in T cells, and prevents otherwise efficacious CARs from mediating strong antitumor effects. We hypothesized that chronic signaling of CD3ζ and CD28 via the GD2 CAR results in exhaustion. Interestingly, however, we did not identify GD2 expression in the culture system. Point mutations in the CAR antigen-binding site, though abrogating GD2 binding, did not prevent the development of exhaustion. Thus, we postulate that constitutive receptor signaling may occur via interactions between the framework regions of the CAR receptors. Importantly however, substitution of 4-1BB for the CD28 domain in the GD2 CAR substantially diminished PD-1 expression, one of the hallmark features of exhausted T cells. Conclusions We report that expression of a CD28 containing GD2 CAR induces both an altered metabolism and an exhausted state in human T cells, resulting in poor in vivo persistence and antitumor efficacy. We hypothesize that tonic signaling through the GD2 CAR induces this phenotype and have identified the CD28 domain as an important component contributing to this phenotype. Rapid induction of exhaustion mediated via a synthetic receptor provides a novel model system to identify mechanistic factors required for this phenotype in human T cells. Work is currently underway to molecularly define the basis for the exhaustion of GD2 CAR T cells and to probe a potential role for altered T cell metabolism as a contributor to T cell exhaustion in human T cells. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i80-i80
Author(s):  
Anandani Nellan ◽  
Andrea Griesinger ◽  
Davis Witt ◽  
Andrew Donson ◽  
Vladimir Amani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document