scholarly journals Strain effects on rotational property in nanoscale rotation system

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jianzhang Huang ◽  
Qiang Han
Author(s):  
V. T. Sinegovskaya ◽  
E. T. Naumchenko

The article presents the results of comparative evaluation of the efficiency of the long-term application of mineral and organic fertilizers in the crop rotation system. It was found that the application of the mineral fertilizer system increased the value of hydrolytic acidity of the soil from 4,30 to 5,29 mg-eq per 100 g of soil, the indicator of metabolic acidity decreased from 5,2 to 4,9 pH units. By the end of the 11th rotation for both fertilizer systems, the content of mobile phosphorus increased by more than 4 times relative to the initial value, its mobility indicator – by 2,2-3,2 times compared with the control. The use of the organo-mineral system was accompanied by an increase in the content of humus by 0,35 % and a decrease in the C:N ratio from 11,2 to 8,9. The increased productivity of wheat was revealed when applying nitrogen and nitrogen-phosphorus fertilizers against the background of prolonged use of the mineral and organo-mineral fertilizer system. The change in wheat productivity by 56 % depended on the content of mineral nitrogen, mobile phosphorus, humus in the topsoil, and on the phosphate ion mobility. Soybean productivity depended on soil fertility indicators only by 24 %: the relationship between soybean productivity and the mineral forms of nitrogen and phosphorus is weak and direct, between productivity and P2O5 mobility - weak and inverse, with humus - moderate and direct.


2015 ◽  
Vol 41 (10) ◽  
pp. 1548 ◽  
Author(s):  
Guang-Lei SONG ◽  
Ning SUI ◽  
Chao-Ran YU ◽  
Fan ZHANG ◽  
Ya-Li MENG ◽  
...  

2012 ◽  
Vol 20 (4) ◽  
pp. 395-401 ◽  
Author(s):  
Yao LIANG ◽  
Xiao-Zeng HAN ◽  
Yun-Fa QIAO ◽  
Lu-Jun LI ◽  
Meng-Yang YOU

2019 ◽  
Vol 2 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Sun Jae Kim ◽  
Taner Akbay ◽  
Junko Matsuda ◽  
Atsushi Takagaki ◽  
Tatsumi Ishihara

2017 ◽  
Vol 1 (2) ◽  
Author(s):  
R. S. Alencar ◽  
K. D. A. Saboia ◽  
D. Machon ◽  
G. Montagnac ◽  
V. Meunier ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
Kaoru Toko

AbstractPolycrystalline Ge thin films have attracted increasing attention because their hole mobilities exceed those of single-crystal Si wafers, while the process temperature is low. In this study, we investigate the strain effects on the crystal and electrical properties of polycrystalline Ge layers formed by solid-phase crystallization at 375 °C by modulating the substrate material. The strain of the Ge layers is in the range of approximately 0.5% (tensile) to -0.5% (compressive), which reflects both thermal expansion difference between Ge and substrate and phase transition of Ge from amorphous to crystalline. For both tensile and compressive strains, a large strain provides large crystal grains with sizes of approximately 10 μm owing to growth promotion. The potential barrier height of the grain boundary strongly depends on the strain and its direction. It is increased by tensile strain and decreased by compressive strain. These findings will be useful for the design of Ge-based thin-film devices on various materials for Internet-of-things technologies.


Sign in / Sign up

Export Citation Format

Share Document