scholarly journals Chemical transfer of dissolved organic matter from surface seawater to sea spray water-soluble organic aerosol in the marine atmosphere

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuzo Miyazaki ◽  
Youhei Yamashita ◽  
Kaori Kawana ◽  
Eri Tachibana ◽  
Sara Kagami ◽  
...  
2013 ◽  
Vol 13 (2) ◽  
pp. 1023-1037 ◽  
Author(s):  
C. Mouchel-Vallon ◽  
P. Bräuer ◽  
M. Camredon ◽  
R. Valorso ◽  
S. Madronich ◽  
...  

Abstract. The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.


2020 ◽  
Author(s):  
Jonathan V. Trueblood ◽  
Alesia Nicosia ◽  
Anja Engel ◽  
Birthe Zäncker ◽  
Matteo Rinaldi ◽  
...  

Abstract. Ice nucleating particles (INP) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSA), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INP, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INP are derived from two separate classes of organic matter in SSA. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as total organic carbon (TOC) or SSA surface area, which may mask specific trends in the separate classes of INPs. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INP that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from May 10 to June 10, 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (SML) and in SSA produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSA was also evaluated. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases of iron in the SML and bacterial abundances. Increases of INPs in marine SSA (INPSSA) were not observed before a delay of three days compared to increases in the SML, and are likely a result of a strong influence of bulk SSW INP for the temperatures investigated (T = −18 °C for SSA, T = −16 °C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T ≥ −22 °C) INPSSA concentrations are correlated with water soluble organic matter in the SSA, but also to SSW parameters (POCSSW INPSSW,−16 °C) while cold INPSSA (T 


2014 ◽  
Vol 14 (7) ◽  
pp. 10393-10427
Author(s):  
A. S. Willoughby ◽  
A. S. Wozniak ◽  
P. G. Hatcher

Abstract. The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile) of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.


2013 ◽  
Vol 13 (19) ◽  
pp. 9819-9835 ◽  
Author(s):  
A. Wonaschütz ◽  
M. Coggon ◽  
A. Sorooshian ◽  
R. Modini ◽  
A. A. Frossard ◽  
...  

Abstract. During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm−3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m−3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.


2021 ◽  
Vol 21 (13) ◽  
pp. 10625-10641
Author(s):  
Evelyn Freney ◽  
Karine Sellegri ◽  
Alessia Nicosia ◽  
Leah R. Williams ◽  
Matteo Rinaldi ◽  
...  

Abstract. The organic mass fraction from sea spray aerosol (SSA) is currently a subject of intense research. The majority of this research is dedicated to measurements in ambient air. However a number of studies have recently started to focus on nascent sea spray aerosol. This work presents measurements collected during a 5-week cruise in May and June 2017 in the central and western Mediterranean Sea, an oligotrophic marine region with low phytoplankton biomass. Surface seawater was continuously pumped into a bubble-bursting apparatus to generate nascent sea spray aerosol. Size distributions were measured with a differential mobility particle sizer (DMPS). Chemical characterization of the submicron aerosol was performed with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) operating with 10 min time resolution and with filter-based chemical analysis on a daily basis. Using positive matrix factorization analysis, the ToF-ACSM non-refractory organic matter (OMNR) was separated into four different organic aerosol types, identified as primary OA (POANR), oxidized OA (OOANR), methanesulfonic acid type OA (MSA-OANR), and mixed OA (MOANR). In parallel, surface seawater biogeochemical properties were monitored providing information on phytoplankton cell abundance and seawater particulate organic carbon (1 h time resolution) and seawater surface microlayer (SML) dissolved organic carbon (DOC) (on a daily basis). Statistically robust correlations (for n>500) were found between MOANR and nanophytoplankton cell abundance, as well as between POANR, OOANR, and particulate organic carbon (POC). Parameterizations of the contributions of different types of organics to the submicron nascent sea spray aerosol are proposed as a function of the seawater biogeochemical properties for use in models.


2020 ◽  
Vol 74 (3) ◽  
pp. 142-148
Author(s):  
Nadine Borduas-Dedekind ◽  
Sergey Nizkorodov ◽  
Kristopher McNeill

During their atmospheric lifetime, organic compounds within aerosols are exposed to sunlight and undergo photochemical processing. This atmospheric aging process changes the ability of organic aerosols to form cloud droplets and consequently impacts aerosol–cloud interactions. We recently reported changes in the cloud forming properties of aerosolized dissolved organic matter (DOM) due to a photomineralization mechanism, transforming high-molecular weight compounds in DOM into organic acids, CO and CO2. To strengthen the implications of this mechanism to atmospheric aerosols, we now extend our previous dataset and report identical cloud activation experiments with laboratory-generated secondary organic aerosol (SOA) extracts. The SOA was produced from the oxidation of α-pinene and naphthalene, a representative biogenic and anthropogenic source of SOA, respectively. Exposure of aqueous solutions of SOA to UVB irradiation increased the dried organic material's hygroscopicity and thus its ability to form cloud droplets, consistent with our previous observations for DOM. We propose that a photomineralization mechanism is also at play in these SOA extracts. These results help to bridge the gap between DOM and SOA photochemistry by submitting two differently-sourced organic matter materials to identical experimental conditions for optimal comparison.


2012 ◽  
Vol 9 (4) ◽  
pp. 1571-1582 ◽  
Author(s):  
P. Schmitt-Kopplin ◽  
G. Liger-Belair ◽  
B. P. Koch ◽  
R. Flerus ◽  
G. Kattner ◽  
...  

Abstract. Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with possible deposition in the context of global biogeocycling.


2014 ◽  
Vol 14 (18) ◽  
pp. 10299-10314 ◽  
Author(s):  
A. S. Willoughby ◽  
A. S. Wozniak ◽  
P. G. Hatcher

Abstract. The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions. The effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and therefore the associated properties and the impacts they have. Many studies have addressed the water-soluble fraction of organic aerosols and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile) of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semiquantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.


Sign in / Sign up

Export Citation Format

Share Document