scholarly journals Levosimendan pretreatment improves survival of septic rats after partial hepatectomy and suppresses iNOS induction in cytokine-stimulated hepatocytes

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tatsuma Sakaguchi ◽  
Yuki Hashimoto ◽  
Hideyuki Matsushima ◽  
Hidehiko Hishikawa ◽  
Mikio Nishizawa ◽  
...  

Abstract We evaluated the survival effects and biochemical profiles of levosimendan in septic rats after partial hepatectomy and investigated its effects in cultured hepatocytes. Thirty-two rats underwent 70% hepatectomy and were randomised equally into four groups, followed by lipopolysaccharide (LPS) injection (250 µg/kg, i.v.) after 48 h. Levosimendan was given (i.p.) 1 h before LPS injection [group (A) levosimendan 2 mg/kg; (B) 1; (C) 0.5; (D) vehicle]. Survival at 7 days was increased significantly in group A compared with that in group D [A: 63%; B: 38%; C: 13%; D: 0%]. In serum, levosimendan decreased the level of tumour necrosis factor-α, interleukin (IL)-1β, IL-6 and nitric oxide (NO). In remnant livers, levosimendan inhibited inducible nitric oxide synthase (iNOS) gene expression. In primary cultured rat hepatocytes stimulated by IL-1β, levosimendan suppressed NO production by inhibiting iNOS promoter activity and stability of its mRNA.

2017 ◽  
Vol 7 (9) ◽  
pp. 716 ◽  
Author(s):  
Richi Nakatake ◽  
Hidehiko Hishikawa ◽  
Hideyuki Matushima ◽  
Yusuke Nakamura ◽  
Morihiko Ishizaki ◽  
...  

Background: Curcumin has beneficial effects on organ metabolism. However, there is little evidence that curcumin affects inflammatory mediators, such as tumor necrosis factor (TNF)-α and nitric oxide (NO). In an inflamed liver, proinflammatory cytokines stimulate liver cells, followed by the induction of inducible NO synthase (iNOS). Excessive NO produced by iNOS is one of the factors in liver injury. Therefore, inhibiting iNOS induction for preventing liver injury is important.Objective: This study aimed to investigate liver protective effects of curcumin by examining interleukin (IL)-1β-stimulated hepatocytes.Methods: Primary cultured rat hepatocytes were treated with IL-1β in the presence or absence of curcumin. Induction of NO production and iNOS, and the signaling pathway of iNOS were analyzed.Results: Simultaneous addition of IL-1β and curcumin decreased expression levels of iNOS protein and mRNA, resulting in inhibition of NO production. Curcumin also reduced mRNA expression of TNF-α and IL-6. Curcumin inhibited two essential signaling pathways for iNOS induction, NF-κB activation and type I IL-1 receptor upregulation. Transfection experiments revealed that curcumin reduced iNOS mRNA levels at the promoter activation and mRNA stabilization steps. Delayed administration of curcumin after IL-1β addition also inhibited iNOS induction.Conclusions: Curcumin affects induction of inflammatory mediators, such as iNOS and TNF-α, in part through the inhibition of NF-κB activation in hepatocytes. Curcumin may have therapeutic potential for organ injuries, including the liver.Key words: curcumin, inducible nitric oxide synthase, liver injury, primary cultured hepatocytes, nuclear factor-κB, type I interleukin-1 receptor, tumor necrosis factor-α. 


Foods ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 582 ◽  
Author(s):  
Yuan ◽  
Zhang ◽  
Shen ◽  
Jia ◽  
Xie

Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2367 ◽  
Author(s):  
Chi-Su Yoon ◽  
Dong-Cheol Kim ◽  
Jin-Soo Park ◽  
Kwan-Woo Kim ◽  
Youn-Chul Kim ◽  
...  

Nardostachys jatamansi contains various types of sesquiterpenoids that may play an important role in the potency of plant’s anti-inflammatory effects, depending on their structure. In this study, five new sesquiterpenoids, namely kanshone L (1), kanshone M (2), 7-methoxydesoxo-narchinol (3), kanshone N (4), and nardosdaucanol (5), were isolated along with four known terpenoids (kanshone D (6), nardosinanone G (7), narchinol A (8), and nardoaristolone B (9)) from the rhizomes and roots of Nardostachys jatamansi. Their structures were determined by analyzing 1D and 2D NMR and MS data. Among the nine sesquiterpenoids, compounds 3, 4, and 8 were shown to possess dose-dependent inhibitory effects against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in BV2 microglial cells. Furthermore, compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects by inhibiting the production of pro-inflammatory mediators, including prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) proteins, as well as pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-12 and tumor necrosis factor-α (TNF-α), in LPS-stimulated BV2 microglial cells. Moreover, these compounds were shown to inhibit the activation of the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells by suppressing the phosphorylation of IκB-α and blocking NF-κB translocation. In conclusion, five new and four known sesquiterpenoids were isolated from Nardostachys jatamansi, and compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects in LPS-stimulated BV2 microglial cells through inhibiting of NF-κB signaling pathway.


2001 ◽  
Vol 99 (2) ◽  
pp. 258-264 ◽  
Author(s):  
Brian G. Harbrecht ◽  
Bradley S. Taylor ◽  
Zhongfa Xu ◽  
Santhanam Ramalakshmi ◽  
Raymond W. Ganster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document