scholarly journals In vitro Antimicrobial Activity of Acne Drugs Against Skin-Associated Bacteria

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Alysha G. Elliott ◽  
Angela M. Kavanagh ◽  
Soumya Ramu ◽  
Matthew A. Cooper

Abstract Acne is a common skin affliction that involves excess sebum production and modified lipid composition, duct blockage, colonization by bacteria, and inflammation. Acne drugs target one or more of these steps, with antibiotics commonly used to treat the microbial infection for moderate to severe cases. Whilst a number of other acne therapies are purported to possess antimicrobial activity, this has been poorly documented in many cases. We conducted a comparative analysis of the activity of common topical acne drugs against the principal etiological agent associated with acne: the aerotolerant anaerobic Gram-positive organism Propionibacterium acnes (recently renamed as Cutibacterium acnes). We also assessed their impact on other bacteria that could also be affected by topical treatments, including both antibiotic-sensitive and antibiotic-resistant strains, using broth microdilution assay conditions. Drugs designated specifically as antibiotics had the greatest potency, but lost activity against resistant strains. The non-antibiotic acne agents did possess widespread antimicrobial activity, including against resistant strains, but at substantially higher concentrations. Hence, the antimicrobial activity of non-antibiotic acne agents may provide protection against a background of increased drug-resistant bacteria.

2015 ◽  
Vol 59 (5) ◽  
pp. 2835-2841 ◽  
Author(s):  
Qinghua Zhang ◽  
Yanzhao Xu ◽  
Qing Wang ◽  
Bolin Hang ◽  
Yawei Sun ◽  
...  

ABSTRACTWith the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activityin vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, bothin vitroandin vivo. The MICs of P3 and JH-3 ranged from 3.125 μg/ml to 50 μg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria.


Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 689
Author(s):  
Mihaela Laura Vică ◽  
Ioana Glevitzky ◽  
Mirel Glevitzky ◽  
Costel Vasile Siserman ◽  
Horea Vladi Matei ◽  
...  

(1) Background: Sexually transmitted infections (STIs) are among the most common infections worldwide, many of these being caused by Neisseria gonorrhoeae (NG). Increased antimicrobial NG resistance has been reported in recent decades, highlighting the need for new sources of natural compounds with valuable antimicrobial activity. This study aims to determine the effect of propolis extracts on NG strains, including antibiotic-resistant strains. (2) Methods: First void urine samples from presumed positive STI subjects were harvested. DNA was extracted, purified, and amplified via PCR for the simultaneous detection of 6 STIs. The presence of the dcmH, gyrA, and parC genes was checked in the DNA samples from NG-positive patients. The antimicrobial activity of 5 aqueous propolis extracts from central Romania was investigated in vitro against some isolated NG strains. ANOVA tests were employed to assess differences and interactions between the inhibition zone for NG strains and propolis extracts. (3) Results: 7.07% of the patients presented NG infections, some strains being resistant or intermediate-resistant to ciprofloxacin. All propolis samples exhibited an antibacterial effect, including on resistant strains. (4) Conclusions: Statistical analysis demonstrated that the diameter of the inhibition zone was influenced both by the NG strain type and the source of the propolis extracts.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Jitender Yadav ◽  
Sana Ismaeel ◽  
Ayub Qadri

ABSTRACT Polymyxin B, used to treat infections caused by antibiotic-resistant Gram-negative bacteria, produces nephrotoxicity at its current dosage. We show that a combination of nonbactericidal concentration of this drug and lysophosphatidylcholine (LPC) potently inhibits growth of Salmonella and at least two other Gram-negative bacteria in vitro. This combination makes bacterial membrane porous and causes degradation of DnaK, the regulator of protein folding. Polymyxin B-LPC combination may be an effective and safer regimen against drug-resistant bacteria.


Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

The global health emergency caused by multi-drug resistant bacteria has led to the search for and development of new antimicrobial agents. Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) showing antimicrobial activity against A.baumannii clinical strains (such as Ab177_GEIH-2000 which showed MICs to meropenem and imipenem of 32 µg/ml and 16 µg/ml, respectively as well as belonging to GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585). We then enhanced the time kill curves (in vitro) and in Galleria mellonella survival assays (in vivo) antimicrobial activity of the new lytic phage by combining it with carbapenem antibiotics (meropenem and imipenem). We observed in vitro, an antimicrobial synergistic effect (from 4 log to 7 log CFU/ml) with meropenem plus lytic phage in all combinations analysed (0.1, 1 and 10 MOI of Ab105-2phiΔCI mutant as well as 1/4 and 1/8 MIC of meropenem). Moreover, we had a decrease in bacterial growth of 8 log CFU/ml for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and of 4 log CFU/ml for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) in both MOI 1 and 10. These results were confirmed in in vivo (G. mellonella) obtaining a higher effectiveness in the combination of imipenem and Ab105-2phiΔCI mutant (P<0.05 by Log Rank-Matel Cox test). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to the antibiotics when used to combat multiresistant strains of Acinetobacter baumannii.


2018 ◽  
Vol 63 (No. 7) ◽  
pp. 335-343 ◽  
Author(s):  
BCJ De Silva ◽  
S. Hossain ◽  
SHMP Wimalasena ◽  
HNKS Pathirana ◽  
PS Dahanayake ◽  
...  

Essential oils are plant extracts that have been used for their antimicrobial properties for centuries. The keeping of turtles as pets exhibits a growing trend worldwide but these animals are known to harbour a range of pathogenic bacteria. In the current study, we assessed eight essential oils as alternative antibacterial agents against nine species of pet turtle-borne Gram-negative bacteria, namely Aeromonas caviae, A. dhakensis, A. hydrophila, Citrobacter freundii, Morganella morganii, Proteus mirabilis, P. vulgaris, Pseudomonas aeruginosa and Salmonella enterica. Except for Pseudomonas aeruginosa, all other bacterial species showed high susceptibility to six essential oils, namely oregano, cinnamon, clove, lemongrass, lavender and eucalyptus oils in descending order of efficacy. Minimum inhibitory concentrations and minimum bactericidal concentrations values of the essential oils against all tested species except for P. aeruginosa showed low heterogeneity, showing that these essential oils can effectively control the growth of nearly all the tested. However, most of the tested bacteria were multiple-antibiotic-resistant as determined in the antibiotic disc diffusion test, with multiple-antibiotic-resistant index values of ≥ 0.2 for most of the strains. Therefore, with regards to their in vitro activity in controlling growth of multi-drug resistant bacteria, we can classify oregano, cinnamon, clove, lemongrass, lavender and eucalyptus essential oils as effective antibacterial agents. Thus, prospective application of these essential oils in controlling and treating these bacteria should be considered.


Cosmetics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Muhammed Majeed ◽  
Shaheen Majeed ◽  
Kalyanam Nagabhushanam ◽  
Lakshmi Mundkur ◽  
H. R. Rajalakshmi ◽  
...  

Acne vulgaris is a common skin disorder of pilosebaceous units. The therapy for mild-to-moderate acne includes topical antibiotics, benzoyl peroxide and retinoids. In this open-label, randomized monocentric study, we compared the efficacy of LactoSporin® 2% w/w cream with benzoyl peroxide in 64 male and female subjects with mild-to-moderate acne for three weeks. The efficacy parameters were evaluated based on the dermatologist visual assessment and instrumental measurements using Sebumeter® MPA580, Antera 3DTM and VISIA CR 2.2 and subject self-assessment questionnaires. Adverse events were recorded throughout the study period. In order to understand the mechanism of action and properties of LactoSporin, the pH stability, thermostability, antimicrobial activity and 5-alpha reductase activity were evaluated in vitro. A significant improvement was observed in the dermatological assessment of closed comedones (p < 0.0001), open comedones (p = 0.0069) and papules count (p < 0.0001) in comparison to the baseline in both LactoSporin and benzoyl peroxide groups. The antera analysis showed significant improvement in redness (p < 0.0001) and elevation (p < 0.0001) (small and medium) in both the treatment groups. The sebumeter analysis showed a significant decrease in sebaceous secretion (p < 0.0001) for LactoSporin, which resulted in reduced oiliness, pimples, acne spots and redness around the acne spot. The product was found to be safe without any irritancy. LactoSporin was stable at an acidic pH and temperature range of 70 to 90 °C, with antimicrobial activity against various pathogenic bacteria, including Cutibacterium acnes. It was also a potent inhibitor of 5-alpha reductase activity. Thus, it can be concluded that the efficacy of LactoSporin is equivalent to benzoyl peroxide in the treatment of mild-to-moderate acne lesions and better than benzoyl peroxide for reducing the sebaceous secretion and oily, greasy nature of the skin, implying its efficacy in other sebohorriec conditions.


2015 ◽  
Vol 6 (2) ◽  
pp. 76-87 ◽  
Author(s):  
Jane-Francis Akoachere ◽  
Yvonne Suylika ◽  
Ajeck Mbah ◽  
Aponglen Ayimele ◽  
Jules Assob ◽  
...  

2020 ◽  
Vol 56 (92) ◽  
pp. 14353-14356
Author(s):  
Hua Ke ◽  
Fen Hu ◽  
Lingyi Meng ◽  
Qi-Hua Chen ◽  
Qian-Sheng Lai ◽  
...  

Radical-doped coordination compounds—generated as a result of lone pair–π interactions and having a long-lived charge-separated state—display photochromism and broad-spectrum antimicrobial activity, even against multi-drug-resistant bacteria.


2019 ◽  
Vol 8 (1) ◽  
pp. 7-9
Author(s):  
Soyoda Mokarroma ◽  
Tahmina Shammi

Homeopathy is a popular alternative medicine. The mechanism of action of homeopathic drug has not been clarified but it has been found to be effective against various diseases including diarrhea, dysentery, otitis media, eczema and even cancer. After qualifying thorough investigation, it can be used against antibiotic tolerance and multi drug resistant bacteria. In a recent study, bactericidal effect of homeopathic remedies has been investigated. But such an effect is not in accordance with the general principles of homeopathy. To test this paradigm, in vitro antimicrobial effects of four homeopathic drugs Aconite 30, Arsenicum album 30, Mercuric corrosivus 30 and Mercury solution 200 against five common intestinal pathogens, including- Escherichia coli, Klebsiella sp., Salmonella sp. Pseudomonas sp., and Bacillus sp have been observed. Standard agar well diffusion technique and macrodilution technique were followed. But, tested homeopathic drugs did not show any significant effect on any of the five pathogens. Rigorous study against other organism is required to fully understand antimicrobial activity and other mechanism of action. Stamford Journal of Microbiology, Vol.8(1) 2018: 7-9


Sign in / Sign up

Export Citation Format

Share Document