Co-fired Platinum High Temperature Sensor Element

2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000056-000060
Author(s):  
Tsutomu Sugawara ◽  
Hiroshi Matsumoto ◽  
Hiroki Ito ◽  
Shingo Sato ◽  
Masanari Kokubu

Abstract In recent years, initiatives for improving the fuel consumptions have been accelerated to reduce the CO2 emissions in exhaust gas from an automotive engine; as a measure against global warming. One of the known techniques to reduce CO2 emissions, is more accurate temperature measurement of the engine. For such application, sensors such as thermistors or thin-film platinum temperature sensors have been widely used for sensing exhaust gas temperature. Especially, the thin-film platinum temperature sensors were favorable because of its linearity in resistance to temperature dependensy and accuracy in temperature measurements. However, the deformation of a resistor circuit in thin-film platinum temperature sensor elements have been observed after used in high temperature. The deformation causes the resistance drifts which leads to less accurate temperature measurements. In this study, durability of the co-fired platinum temperature sensor element was examined for high temperature application. As of result, we found that the resistance drift of the co-fired platinum temperature sensor elements were smaller than that of the thin-film platinum temperature sensor elements; after storage test at 1100 °C. Thus, the co-fired platinum temperature sensor elements can be used for higher temperature sensing, which can contribute to the reduction of CO2 emission of automotive engines.

2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Akiya Hirata

Abstract The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the target moves. This paper presents a microfinger with temperature sensing functionality. Moreover, thermocouples, which detect temperature based on the Seebeck effect, are designed for use as flexible temperature sensors. Thermocouples are formed by a pair of dissimilar metals or alloys, such as copper and constantan. Thin-film metals or alloys are patterned and integrated in the microfinger. Two typical thermocouples (K-type and T-type) are designed in this study. A 2.0 mm × 2.0 mm sensing area is designed on the microfinger (3.0 mm × 12 mm × 400 μm). Characterization indicates that the output voltage of the sensor is proportional to temperature, as designed. It is important to guarantee the performance of the sensor against actuation effects. Therefore, in addition to the fundamental characterization of the temperature sensors, the effect of bending deformation on the characteristics of the temperature sensors is examined with a repeated bending test consisting of 1000 cycles.


Author(s):  
Hiroyuki Kawase ◽  
Tadaaki Matsuhisa ◽  
Kiminari Kato ◽  
Takeyuki Mizuno

A ceramic turbocharger rotor (CTR) for high temperature use has been developed. The features of this rotor are the use of silicon nitride which maintains high mechanical strength up to 1,200 °C and a new joining technique between the ceramic rotor and its metal shaft. The CTR is expected to cope with stoichiometrical mixture burning engines which produce a higher exhaust gas temperature for fuel economy, and the impact resistance of the rotor against foreign object damage (FOD) has been markedly increased, over that of earlier rotors, resulting in higher reliability. This paper describes the development of ceramic turbocharger rotors for high temperature use focusing on the mechanical strength of silicon nitride and the joining of the ceramic rotor and its metal shaft.


2015 ◽  
Vol 644 ◽  
pp. 96-100
Author(s):  
Zhi Xu Xing ◽  
John R. Nicholls ◽  
Susan A. Impey

Automotive exhaust gas temperature sensors are fitted to monitor the performance of a vehicle emission control system. The aggressive working environment is a big challenge in sensor design. This paper introduces an FEA simulation model developed to support the mechanical reliability of new sensor designs. The simulation model was validated by laboratory tests. Suggestions for optimising sensor reliability are given based on the simulation results.


2015 ◽  
Vol 36 (3) ◽  
pp. 3-14 ◽  
Author(s):  
Piotr Krawczyk ◽  
Krzysztof Badyda ◽  
Jacek Szczygieł ◽  
Szczepan Młynarz

Abstract Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.


Sign in / Sign up

Export Citation Format

Share Document