scholarly journals A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits

2019 ◽  
Vol 7 (42) ◽  
pp. 24493-24501 ◽  
Author(s):  
Yangyang Xin ◽  
Jian Zhou ◽  
Gilles Lubineau

Stretchable temperature sensors are critical components in soft robotics.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Akiya Hirata

Abstract The integration of a flexible temperature sensor with a soft microactuator (a pneumatic balloon actuator) for a functional microfinger is presented herein. A sensor integrated with a microactuator can actively approach a target for contact detection when a distance exists from the target or when the target moves. This paper presents a microfinger with temperature sensing functionality. Moreover, thermocouples, which detect temperature based on the Seebeck effect, are designed for use as flexible temperature sensors. Thermocouples are formed by a pair of dissimilar metals or alloys, such as copper and constantan. Thin-film metals or alloys are patterned and integrated in the microfinger. Two typical thermocouples (K-type and T-type) are designed in this study. A 2.0 mm × 2.0 mm sensing area is designed on the microfinger (3.0 mm × 12 mm × 400 μm). Characterization indicates that the output voltage of the sensor is proportional to temperature, as designed. It is important to guarantee the performance of the sensor against actuation effects. Therefore, in addition to the fundamental characterization of the temperature sensors, the effect of bending deformation on the characteristics of the temperature sensors is examined with a repeated bending test consisting of 1000 cycles.


RSC Advances ◽  
2018 ◽  
Vol 8 (70) ◽  
pp. 39992-39999 ◽  
Author(s):  
Minhyun Jung ◽  
Sanghun Jeon ◽  
Jihyun Bae

A highly stretchable and wearable textile-based self-powered temperature sensor fabricated using commercial thermoelectric inks is presented.


2000 ◽  
Vol 279 (4) ◽  
pp. R1316-R1320 ◽  
Author(s):  
Mary D. Coyne ◽  
Christina M. Kesick ◽  
Tammy J. Doherty ◽  
Margaret A. Kolka ◽  
Lou A. Stephenson

The purpose of this study was to determine whether core temperature (Tc) telemetry could be used in ambulatory women to track changes in the circadian Tc rhythm during different phases of the menstrual cycle and, more specifically, to detect impending ovulation. Tcwas measured in four women who ingested a series of disposable temperature sensors. Data were collected each minute for 2–7 days and analyzed in 36-h segments by automated cosinor analysis to determine the mesor (mean temperature), amplitude, period, acrophase (time of peak temperature), and predicted circadian minimum core temperature (Tc-min) for each cycle. The Tcmesor was higher ( P ≤ 0.001) in the luteal (L) phase (37.39 ±0.13°C) and lower in the preovulatory (P) phase (36.91 ±0.11°C) compared with the follicular (F) phase (37.08 ±0.13°C). The predicted Tc-min was also greater in L (37.06 ± 0.14°C) than in menses (M; 36.69 ± 0.13°C), F (36.6 ± 0.16°C), and P (36.38 ± 0.08°C) ( P ≤ 0.0001). During P, the predicted Tc-min was significantly decreased compared with M and F ( P ≤ 0.0001). The amplitude of the Tc rhythm was significantly reduced in L compared with all other phases ( P ≤ 0.005). Neither the period nor acrophase was affected by menstrual cycle phase in ambulatory subjects. The use of an ingestible temperature sensor in conjunction with fast and accurate cosinor analysis provides a noninvasive method to mark menstrual phases, including the critical preovulatory period.


2017 ◽  
Vol 12 (3) ◽  
pp. 695-700 ◽  
Author(s):  
Dominic Ehrmann ◽  
Monika Spengler ◽  
Michael Jahn ◽  
Dea Niebuhr ◽  
Thomas Haak ◽  
...  

Background: Temperature sensors are an objective way to assess adherence to diabetic footwear. Good adherence is essential for the prevention of diabetic foot problems. Little is known about the long-term course of adherence in patients at risk for diabetic foot problems. Method: A temperature sensor was incorporated into the specialized footwear of patients with type 2 diabetes after their first plantar ulceration. Kaplan-Meier curve was used to analyze when patients started to become nonadherent (not wearing the footwear for two straight weeks). Gender effects on adherence were also analyzed. Results: 26 patients with a mean observation time of 133.5 days could be analyzed. Mean wearing time of diabetic footwear was 4.2 ± 3.6 h/day (Mdn = 3.4 h/day; interquartile range = 0.5-7.0 h/day) and on 51% of the days patients did not wear their footwear at all. Kaplan-Meier curve revealed that the mean time of adherence was 27.5 weeks. Men achieved a mean time of adherence of 30.5 weeks, while women only achieved 14 weeks. However, due to the small sample size, this difference was not statistically significant. Conclusions: Temperature sensors revealed a low long-term adherence to diabetic footwear. Women seemed to be at a higher risk for earlier nonadherent behavior. Adherence to diabetic footwear should be closely monitored and tailored intervention strategies should be developed.


2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4815 ◽  
Author(s):  
Enrique Barajas ◽  
Xavier Aragones ◽  
Diego Mateo ◽  
Josep Altet

Differential temperature sensors can be placed in integrated circuits to extract a signature of the power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper first discusses the singularity that differential temperature sensors provide with respect to other sensor topologies, with circuit monitoring being their main application. The paper focuses on the monitoring of radio-frequency analog circuits. The strategies to extract the power signature of the monitored circuit are reviewed, and a list of application examples in the domain of test and characterization is provided. As a practical example, we elaborate the design methodology to conceive, step by step, a differential temperature sensor to monitor the aging degradation in a class-A linear power amplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how, for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamic range is required. A circuit solution for this objective is proposed, as well as recommendations for the dimensions and location of the devices that form the temperature sensor. The paper concludes with a description of a simple procedure to monitor time variability.


2018 ◽  
pp. 57-85 ◽  
Author(s):  
Gerard C.M. Meijer ◽  
Guijie Wang ◽  
Ali Heidary

2020 ◽  
Vol 96 (1) ◽  
pp. 97-110
Author(s):  
James Hendee ◽  
Natchanon Amornthammarong ◽  
Lewis Gramer ◽  
Andrea Gomez

The role of elevated sea temperatures in coral bleaching has been well documented. Many of the sea temperature records utilized for purposes of widespread, multi-species bleaching predictions in recent publications have been acquired through satellite remote sensing. Satellites estimate sea temperatures at only a narrow range of depths near the surface of the ocean and may therefore not adequately represent the true temperatures endured by the world's coral ecosystems. To better characterize sea temperature regimes that coral reef ecosystems experience, as well as better define the individual thresholds for each species that bleaches, in situ sea temperature sensors are required. Commercial sensors are expensive in large quantities, however, reducing the capacity to conduct large- scale research programs to elucidate the range of significant scales of temperature variability. At the National Oceanic and Atmospheric Administration's (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML), we designed a low-cost (roughly US$9 in parts) and high- precision sea temperature sensor that uses an Arduino microprocessor board and a high accuracy thermistor. This new temperature sensor autonomously records temperatures onto a memory chip and provides better accuracy (+0.05 °C) than a comparable commercial sensor (+0.2 °C). Moreover, it is not difficult to build; anyone who knows how to solder can build the temperature sensor. In March 2019, students at middle and high schools in Broward County, Florida, built close to 60 temperature sensors. During 2019, these sensors will be deployed by Reef Check, a global-scale coral reef monitoring organization, as well as by other programs to determine worldwide sea temperature regimes through the Opuhala Project (https://www. coral. noaa. gov/opuhala). This paper chronicles results from the initial proof-of-concept deployments for these AOML-designed sensors.


2010 ◽  
Vol 108-111 ◽  
pp. 898-902 ◽  
Author(s):  
Fen Ping Zhou ◽  
Hong Tao Ma ◽  
Bing Dong Sui ◽  
Jia Mo Sun

This Paper introduces a temperature detection system in beer fermentation. A temperature monitoring system with characteristics of bus topology structure is composed of industrial computer, temperature detector, bus converter, transmission bus and especially 1-wire digital temperature sensor DS18B20. Four-core cable is used to form a tree-like or star-like network, in which 54 digital temperature sensors existing on 18 fermentation tanks can be connected. The quantity of junction wires between temperature sensor and computer will be reduced greatly. Temperature detector provides power supply for bus converter and DS18B20 through Four-core cable. Because bus converter has used hardware fault detecting technology, the fault temperature sensor can automatically detach from the main bus and will not affect normal working of other sensor in network. So to solve the problem of a certain sensor or branch's damage causing the paralysis of entire bus. The length of detecting temperature bus can reach more than 500 meters. These all make system maintenance and expansion easy. The experiments show that this system is characterized by high intelligence, high-precision, capability of making temperature test on multi-points and compensating function. The method has a good applicable value to the temperature test.


2020 ◽  
pp. 177-181
Author(s):  
Saranya M D ◽  
Sakthi Priya V ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy

- In today’s situation involuntary classifications remain existence favoured over physical system. Home automation is playing significant part in humanoid lifespan. The paper is used intended for nursing and controlling the home-grown utilizations via World Wide Web which container interconnect through home automation system through an Internet entry, by means of announcement conventions. Home automation scheme uses the hand-held or vesture diplomacies as a user boundary. This paper goals at supervisory household utilizations via Smartphone using Bluetooth as announcement etiquette and interfaced with Arduino Board. It assimilates Passive Infrared (PIR) sensor, Temperature sensor, gas sensor, Light Dependent Resistor (LDR) sensor. At this time PIR sensor and Temperature sensors remained used for controlling the spotlight and fan. The statement through attendant permits the operator to excellent the fitting device. In the proposed organization an android app was developed to access the system wherever via Internet of things. The gas device used to designate the absorption of gas in the air. Buzzer attentive is given to warm others neighbouring home and also the possessor through internet via the smart receiver. The LDR is used to switch garden spotlight. This project provides a low cost and competent Homegrown Computerization System.


Sign in / Sign up

Export Citation Format

Share Document