scholarly journals Characterization of local and circulating bovine γδ T cell responses to respiratory BCG vaccination

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariana Guerra-Maupome ◽  
Jodi L. McGill

Abstract The Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine is administered parenterally to infants and young children to prevent tuberculosis (TB) infection. However, the protection induced by BCG is highly variable and the vaccine does not prevent pulmonary TB, the most common form of the illness. Until improved TB vaccines are available, it is crucial to use BCG in a manner which ensures optimal vaccine performance. Immunization directly to the respiratory mucosa has been shown to promote greater protection from TB in animal models. γδ T cells play a major role in host defense at mucosal sites and are known to respond robustly to mycobacterial infection. Their positioning in the respiratory mucosa ensures their engagement in the response to aerosolized TB vaccination. However, our understanding of the effect of respiratory BCG vaccination on γδ T cell responses in the lung is unknown. In this study, we used a calf model to investigate the immunogenicity of aerosol BCG vaccination, and the phenotypic profile of peripheral and mucosal γδ T cells responding to vaccination. We observed robust local and systemic M. bovis-specific IFN-γ and IL-17 production by both γδ and CD4 T cells. Importantly, BCG vaccination induced effector and memory cell differentiation of γδ T cells in both the lower airways and peripheral blood, with accumulation of a large proportion of effector memory γδ T cells in both compartments. Our results demonstrate the potential of the neonatal calf model to evaluate TB vaccine candidates that are to be administered via the respiratory tract, and suggest that aerosol immunization is a promising strategy for engaging γδ T cells in vaccine-induced immunity against TB.

2004 ◽  
Vol 72 (3) ◽  
pp. 1504-1511 ◽  
Author(s):  
Jinhee Lee ◽  
Keumhwa Choi ◽  
Michael R. Olin ◽  
Sang-Nae Cho ◽  
Thomas W. Molitor

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is efficacious for newborns or adults with no previous exposure to environmental mycobacteria. To determine the relative contribution and the nature of γδ T-cell receptor-positive T cells in newborns, compared to CD4+ T cells, in immunity induced by M. bovis BCG vaccination, 4-week-old specific-pathogen-free pigs were vaccinated with M. bovis BCG and monitored by following the γδ T-cell immune responses. A flow cytometry-based proliferation assay and intracellular staining for gamma interferon (IFN-γ) were used to examine γδ T-cell responses. Pigs were found to mount Th1-like responses to M. bovis BCG vaccination as determined by immunoproliferation and IFN-γ production. The γδ T-cell lymphoproliferation and IFN-γ production to stimulation with mycobacterial antigens were significantly enhanced by M. bovis BCG vaccination. The relative number of proliferating γδ T cells after stimulating peripheral blood mononuclear cells with Mycobacterium tuberculosis H37Rv culture filtrate protein was higher than that of CD4+ T cells at an early time point after M. bovis BCG vaccination, but CD4+ T cells were found to be more abundant at a later time point. Although the γδ T-cell responses were dependent on the presence of CD4+ T cells for the cytokine interleukin-2, the enhanced γδ T cells were due to the intrinsic changes of γδ T cells caused by M. bovis BCG vaccination rather than being due solely to help from CD4+ T cells. Our study shows that γδ T cells from pigs at early ages are functionally enhanced by M. bovis BCG vaccination and suggests an important role for this T-cell subset in acquired immunity conferred by M. bovis BCG vaccination.


2006 ◽  
Vol 7 (1-2) ◽  
pp. 81-96 ◽  
Author(s):  
Wasin Charerntantanakul ◽  
James A. Roth

The present review concentrates on the biological aspects of porcine T lymphocytes. Their ontogeny, subpopulations, localization and trafficking, and responses to pathogens are reviewed. The development of porcine T cells begins in the liver during the first trimester of fetal life and continues in the thymus from the second trimester until after birth. Porcine T cells are divided into two lineages, based on their possession of the [@@@]\rmalpha [@@@]β or γδ T-cell receptor. Porcine [@@@]\rmalpha [@@@]β T cells recognize antigens in a major histocompatibility complex (MHC)-restricted manner, whereas the γδ T cells recognize antigens in a MHC non-restricted fashion. The CD4+CD8−and CD4+CD8loT cell subsets of [@@@]\rmalpha [@@@]β T cells recognize antigens presented in MHC class II molecules, while the CD4−CD8+T cell subset recognizes antigens presented in MHC class I molecules. Porcine [@@@]\rmalpha [@@@]β T cells localize mainly in lymphoid tissues, whereas γδ T cells predominate in the blood and intestinal epithelium of pigs. Porcine CD8+[@@@]\rmalpha [@@@]β T cells are a prominent T-cell subset during antiviral responses, while porcine CD4+[@@@]\rmalpha [@@@]β T cell responses predominantly occur in bacterial and parasitic infections. Porcine γδ T cell responses have been reported in only a few infections. Porcine T cell responses are suppressed by some viruses and bacteria. The mechanisms of T cell suppression are not entirely known but reportedly include the killing of T cells, the inhibition of T cell activation and proliferation, the inhibition of antiviral cytokine production, and the induction of immunosuppressive cytokines.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1987
Author(s):  
Jessica Tuengel ◽  
Sanya Ranchal ◽  
Alexandra Maslova ◽  
Gurpreet Aulakh ◽  
Maria Papadopoulou ◽  
...  

Gamma-delta (γδ) T cells are unconventional T cells that help control cytomegalovirus (CMV) infection in adults. γδ T cells develop early in gestation, and a fetal public γδ T cell receptor (TCR) clonotype is detected in congenital CMV infections. However, age-dependent γδ T cell responses to primary CMV infection are not well-understood. Flow cytometry and TCR sequencing was used to comprehensively characterize γδ T cell responses to CMV infection in a cohort of 32 infants followed prospectively from birth. Peripheral blood γδ T cell frequencies increased during infancy, and were higher among CMV-infected infants relative to uninfected. Clustering analyses revealed associations between CMV infection and activation marker expression on adaptive-like Vδ1 and Vδ3, but not innate-like Vγ9Vδ2 γδ T cell subsets. Frequencies of NKG2C+CD57+ γδ T cells were temporally associated with the quantity of CMV shed in saliva by infants with primary infection. The public γδ TCR clonotype was only detected in CMV-infected infants <120 days old and at lower frequencies than previously described in fetal infections. Our findings support the notion that CMV infection drives age-dependent expansions of specific γδ T cell populations, and provide insight for novel strategies to prevent CMV transmission and disease.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheleka A. M. Mpande ◽  
Pia Steigler ◽  
Tessa Lloyd ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
...  

Reversion of immune sensitization tests for Mycobacterium tuberculosis (M.tb) infection, such as interferon-gamma release assays or tuberculin skin test, has been reported in multiple studies. We hypothesized that QuantiFERON-TB Gold (QFT) reversion is associated with a decline of M.tb-specific functional T cell responses, and a distinct pattern of T cell and innate responses compared to persistent QFT+ and QFT- individuals. We compared groups of healthy adolescents (n=~30 each), defined by four, 6-monthly QFT tests: reverters (QFT+/+/-/-), non-converters (QFT-/-/-/-) and persistent positives (QFT+/+/+/+). We stimulated peripheral blood mononuclear cells with M.tb antigens (M.tb lysate; CFP-10/ESAT-6 and EspC/EspF/Rv2348 peptide pools) and measured M.tb-specific adaptive T cell memory, activation, and functional profiles; as well as functional innate (monocytes, natural killer cells), donor-unrestricted T cells (DURT: γδ T cells, mucosal-associated invariant T and natural killer T-like cells) and B cells by flow cytometry. Projection to latent space discriminant analysis was applied to determine features that best distinguished between QFT reverters, non-converters and persistent positives. No longitudinal changes in immune responses to M.tb were observed upon QFT reversion. M.tb-specific Th1 responses detected in reverters were of intermediate magnitude, higher than responses in QFT non-converters and lower than responses in persistent positives. About one third of reverters had a robust response to CFP-10/ESAT-6. Among those with measurable responses, lower proportions of TSCM (CD45RA+CCR7+CD27+) and early differentiated (CD45RA-) IFN-γ-TNF+IL-2- M.tb lysate-specific CD4+ cells were observed in reverters compared with non-converters. Conversely, higher proportions of early differentiated and lower proportions of effector (CD45RA-CCR7-) CFP10/ESAT6-specific Th1 cells were observed in reverters compared to persistent-positives. No differences in M.tb-specific innate, DURT or B cell functional responses were observed between the groups. Statistical modelling misclassified the majority of reverters as non-converters more frequently than they were correctly classified as reverters or misclassified as persistent positives. These findings suggest that QFT reversion occurs in a heterogeneous group of individuals with low M.tb-specific T cell responses. In some individuals QFT reversion may result from assay variability, while in others the magnitude and differentiation status of M.tb-specific Th1 cells are consistent with well-controlled M.tb infection.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefania Capone ◽  
Anthony Brown ◽  
Felicity Hartnell ◽  
Mariarosaria Del Sorbo ◽  
Cinzia Traboni ◽  
...  

Abstract Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.


2006 ◽  
Vol 36 (10) ◽  
pp. 2681-2690 ◽  
Author(s):  
Nadia Caccamo ◽  
Guido Sireci ◽  
Serena Meraviglia ◽  
Francesco Dieli ◽  
Juraj Ivanyi ◽  
...  

1998 ◽  
Vol 87 (1-2) ◽  
pp. 94-104 ◽  
Author(s):  
Piet Stinissen ◽  
Jingwu Zhang ◽  
Caroline Vandevyver ◽  
Guy Hermans ◽  
Jef Raus

Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 358-369 ◽  
Author(s):  
Sabrina Kuttruff ◽  
Sven Koch ◽  
Alexandra Kelp ◽  
Graham Pawelec ◽  
Hans-Georg Rammensee ◽  
...  

Abstract NKp80, an activating homodimeric C-type lectin-like receptor (CTLR), is expressed on essentially all human natural killer (NK) cells and stimulates their cytotoxicity and cytokine release. Recently, we demonstrated that the ligand for NKp80 is the myeloid-specific CTLR activation-induced C-type lectin (AICL), which is encoded in the natural killer gene complex (NKC) adjacent to NKp80. Here, we show that NKp80 also is expressed on a minor fraction of human CD8 T cells that exhibit a high responsiveness and an effector memory phenotype. Gene expression profiling and flow cytometric analyses revealed that this NKp80+ T-cell subset is characterized by the coexpression of other NK receptors and increased levels of cytotoxic effector molecules and adhesion molecules mediating access to sites of inflammation. NKp80 ligation augmented CD3-stimulated degranulation and interferon (IFN)γ secretion by effector memory T cells. Furthermore, engagement of NKp80 by AICL-expressing transfectants or macrophages markedly enhanced CD8 T-cell responses in alloreactive settings. Collectively, our data demonstrate that NKp80 is expressed on a highly responsive subset of effector memory CD8 T cells with an inflammatory NK-like phenotype and promotes T-cell responses toward AICL-expressing cells. Hence, NKp80 may enable effector memory CD8 T cells to interact functionally with cells of myeloid origin at sites of inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Sun Lee ◽  
So-Hee Hong ◽  
Hyo-Jung Park ◽  
Ho-Young Lee ◽  
Ji-Yeon Hwang ◽  
...  

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape vaccine-induced neutralizing antibodies has indicated the importance of T cell responses against this virus. In this study, we highlight the SARS-CoV-2 epitopes that induce potent T cell responses and discuss whether T cell responses alone are adequate to confer protection against SARS-CoV-2 and describe the administration of 20 peptides with an RNA adjuvant in mice. The peptides have been synthesized based on SARS-CoV-2 spike and nucleocapsid protein sequences. Our study demonstrates that immunization with these peptides significantly increases the proportion of effector memory T cell population and interferon-γ (IFN-γ)-, interleukin-4 (IL-4)-, tumor necrosis factor-α (TNF-α)-, and granzyme B-producing T cells. Of these 20 peptides, four induce the generation of IFN-γ-producing T cells, elicit CD8+ T cell (CTL) responses in a dose-dependent manner, and induce cytotoxic T lymphocytes that eliminate peptide-pulsed target cells in vivo. Although it is not statistically significant, these peptide vaccines reduce viral titers in infected hamsters and alleviate pulmonary pathology in SARS-CoV-2-infected human ACE2 transgenic mice. These findings may aid the design of effective SARS-CoV-2 peptide vaccines, while providing insights into the role of T cells in SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document