scholarly journals Intrinsic energy spread and bunch length growth in plasma-based accelerators due to betatron motion

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Angel Ferran Pousa ◽  
Alberto Martinez de la Ossa ◽  
Ralph W. Assmann

AbstractPlasma-based accelerators (PBAs), having demonstrated the production of GeV electron beams in only centimetre scales, offer a path towards a new generation of highly compact and cost-effective particle accelerators. However, achieving the required beam quality, particularly on the energy spread for applications such as free-electron lasers, remains a challenge. Here we investigate fundamental sources of energy spread and bunch length in PBAs which arise from the betatron motion of beam electrons. We present an analytical theory, validated against particle-in-cell simulations, which accurately describes these phenomena. Significant impact on the beam quality is predicted for certain configurations, explaining previously observed limitations on the achievable bunch length and energy spread. Guidelines for mitigating these contributions towards high-quality beams are deduced.

Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


Bioimpacts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 259-268
Author(s):  
Jaber Dehghani ◽  
Khosro Adibkia ◽  
Ali Movafeghi ◽  
Mohammad M. Pourseif ◽  
Yadollah Omidi

Introduction: Attributable to some critical features especially the similarity of the protein synthesis machinery between humans and microalgae, these microorganisms can be utilized for the expression of many recombinant proteins. However, low and unstable gene expression levels prevent the further development of microalgae biotechnology towards protein production. Methods: Here, we designed a novel "Gained Agrobacterium-2A plasmid for microalgae expression" (named GAME plasmid) for the production of the human interleukin-2 using three model microalgae, including Chlamydomonas reinhardtii, Chlorella vulgaris, and Dunaliella salina. The GAME plasmid harbors a native chimeric hsp70/Int-1/rbcS2 promoter, the microalgae specific Kozak sequence, a novel hybrid 2A peptide, and Int-1 and Int-3 of the rbcS2 gene in its expression cassette. Results: The obtained data confirmed that the GAME plasmid can transform the microalgae with high transformation frequency. Molecular and proteomic analyses revealed the stable and robust production of the hIL-2 by the GAME plasmid in the microalgae. According to the densimetric analysis, the microalgae can accumulate the produced protein about 0.94% of the total soluble protein content. The ELISA data confirmed that the produced hIL-2 possesses the same conformation pattern with the acceptable biological activity found naturally in humans. Conclusion: Most therapeutic proteins need post-translational modifications for their correct conformation, biological function, and half-life. Accordingly, microalgae could be considered as a cost-effective and more powerful platform for the production of a wide range of recombinant proteins such as antibodies, enzymes, hormones, and vaccines.


Author(s):  
B. I. Dikhanbayev ◽  
◽  
A.B. Dikhanbayev ◽  

An energy-saving method for processing technogenic waste has been developed — a smelt layer with inversion phase as a combination of “ideal” mixing and “ideal” displacement regimes. On its basis, a new generation of melting unit was created - the “reactor inversion phase - rotary kiln”. Experimental data show that in the inversion phase layer the specific fuel consumption for processing the “poor” on zinc and “rich” on zinc slags is approximately the same. The latter provision contradicts the prevailing opinion of metallurgists that the processing of slag with a zinc concentration of less than 5% is unprofitable. Сalculation results demonstrate that in case of implementation of an industrial sample of “reactor inversion phase - rotary kiln for processing “poor” slag, compared to the Waelz kiln processing “rich” slag, the specific consumption of fuel will be reduced by 1.5-1.7 times and specific productivity will increase 1.4-1.5 times. The industrial realization of “reactor inversion phase -rotary kiln” would allow cost-effective processing of fuming slag dumps, Waelz clinker, “poor” zinc ores, enrichment tails and other non-ferrous metal wastes.


Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 238-252 ◽  
Author(s):  
Siriwan Krainara ◽  
Shuya Chatani ◽  
Heishun Zen ◽  
Toshiteru Kii ◽  
Hideaki Ohgaki

A THz coherent undulator radiation (THz-CUR) source has been developed at the Institute of Advanced Energy, Kyoto University. A photocathode Radio-Frequency (RF) gun and a bunch compressor chicane are used for generating short-bunch electron beams. When the electron beam energy is low, the space-charge effect strongly degrades the beam quality, such as the bunch length and the energy spread at the high bunch charge condition at around 160 pC, and results in the reduction of the highest frequency and the maximum radiated power of the THz-CUR. To mitigate the space charge effect, we have investigated the dependence of the electron beam quality on the laser distribution in transverse and longitudinal directions by using a numerical simulation code, General Particle Tracer GPT. The manipulation of the laser distribution has potential for improving the performance of the THz-CUR source. The electron bunch was effectively compressed with the chicane magnet when the laser transverse distribution was the truncated Gaussian profile, illuminating a cathode. Moreover, the compressed electron bunch was shortened by enlarging the laser pulse width. Consequently, an enhancement of the radiated power of the THz-CUR has been indicated.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
T. V. Liseykina ◽  
G. I. Dudnikova ◽  
V. A. Vshivkov ◽  
M. A. Malkov

Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Tao Zhang ◽  
Liang-Zhu Huang ◽  
You-Qiang Li ◽  
Yimg-Meng Xu ◽  
Zhen-Ting Du

A facile synthesis of (±)-heliannuol-D 1, which serves as an allelopathic chemical in nature and a potential lead compound in the search for new herbicides, has been achieved in a linear 11 steps, together with its epimer. The synthesis commenced with 4-methoxy-3-methyl-acetophenone, through the Baeyer-Villiger reaction, lithiation and addition, epoxidation and intramolecular cyclization to give (±)-heliannuol-D (1) and its epimer (1a) in 32.6% overall yield. Our synthetic approach is cost-effective; this will be helpful in applying this kind of compound for the development of a new generation of agrochemicals.


Author(s):  
Fabio Breviario ◽  
Dario Brivio ◽  
Lucio Cardillo ◽  
Alessandro Corsini ◽  
Giovanni Delibra

The advancements in fan technology are nowadays animated by two major drivers: the legal requirements that impose minimum fan efficiency grades for fans sold within European Union (and soon US and Asia), and the market request for better air performance and lower sound emissions. Within HVAC (Heating, Ventilating and Air Conditioning) applications, centrifugal fans with forward curved blades are widely used due to the higher total pressure rise capability and lower acoustic emissions with respect to more efficient backward curved blades. However the continuous rise of minimum fan efficiency grades pushes the manufacturers to develop a new generation of forward curved centrifugal fans, improving previous design. Here the challenge is not only on aerodynamics, but in the overall production process, as squirrel cage fans are characterised by a cost-effective consolidated technology, based on simple blade geometries and easy series manufacturing. For example, the blades usually have circular camber lines, as results of cut cylinders. Thus, once the number of blades and the angle at the leading edge are selected, the chord and the deflection capability are constrained as well. These concurring aspects led industry to include in the design process new tools, in particular CFD, to analyse the flow features of the current generation of fans in order to understand which phenomena are to be either controlled or exploited to increase efficiency and total pressure rise. Here we present a numerical investigation on a forward curved blade centrifugal fan for HVAC applications, to highlight the flow features inside the impeller and in the critical region of coupling with the volute. The analysis was carried out with OpenFOAM, an open-source library for CFD. Computations were performed with the frozen rotor approach and validated against available experimental data.


Author(s):  
Jia Wang ◽  
Ming Zeng ◽  
Xiaoning Wang ◽  
Dazhang Li ◽  
Jie Gao

Abstract We propose to use a frequency doubled pulse colliding with the driving pulse at an acute angle to trigger ionization injection in a laser wakefield accelerator. This scheme effectively reduces the duration that injection occurs, thus high injection quality is obtained. Three-dimensional particle-in-cell simulations show that electron beams with energy of ~500 MeV, charge of ~40 pC, energy spread of ~1% and normalized emittance of a few millimeter milliradian can be produced by ~100 TW laser pulses. By adjusting the angle between the two pulses, the intensity of the trigger pulse and the gas dope ratio, the charge and energy spread of the electron beam can be controlled.


Sign in / Sign up

Export Citation Format

Share Document