scholarly journals A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Zubair Shabbir ◽  
Aziz-ul Rahman ◽  
Muhammad Munir

AbstractA string of complete genome sequences of Small ruminant morbillivirus (SRMV) have been reported from different parts of the globe including Asia, Africa and the Middle East. Despite individual genome sequence-based analysis, there is a paucity of comparative genomic and evolutionary analysis to provide overarching and comprehensive evolutionary insights. Therefore, we first enriched the existing database of complete genome sequences of SRMVs with Pakistan-originated strains and then explored overall nucleotide diversity, genomic and residue characteristics, and deduced an evolutionary relationship among strains representing a diverse geographical region worldwide. The average number of pairwise nucleotide differences among the whole genomes was found to be 788.690 with a diversity in nucleotide sequences (0.04889 ± S.D. 0.00468) and haplotype variance (0.00001). The RNA-dependent-RNA polymerase (L) gene revealed phylogenetic relationship among SRMVs in a pattern similar to those of complete genome and the nucleoprotein (N) gene. Therefore, we propose another useful molecular marker that may be employed for future epidemiological investigations. Based on evolutionary analysis, the mean evolution rate for the complete genome, N, P, M, F, H and L genes of SRMV was estimated to be 9.953 × 10–4, 1.1 × 10–3, 1.23 × 10–3, 2.56 × 10–3, 2.01 × 10–3, 1.47 × 10–3 and 9.75 × 10–4 substitutions per site per year, respectively. A recombinant event was observed in a Pakistan-originated strain (KY967608) revealing Indian strains as major (98.1%, KR140086) and minor parents (99.8%, KT860064). Taken together, outcomes of the study augment our knowledge and current understanding towards ongoing phylogenomic and evolutionary dynamics for better comprehensions of SRMVs and effective disease control interventions.

2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jean N. Hakizimana ◽  
Jean B. Ntirandekura ◽  
Clara Yona ◽  
Lionel Nyabongo ◽  
Gladson Kamwendo ◽  
...  

AbstractSeveral African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Zubair Shabbir ◽  
Aziz-ul Rahman ◽  
Muhammad Munir

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2011 ◽  
Vol 92 (9) ◽  
pp. 2201-2208 ◽  
Author(s):  
Souvik Ghosh ◽  
Noriaki Adachi ◽  
Zipporah Gatheru ◽  
James Nyangao ◽  
Dai Yamamoto ◽  
...  

Although G2P[4] rotaviruses are common causes of acute childhood diarrhoea in Africa, to date there are no reports on whole genomic analysis of African G2P[4] strains. In this study, the nearly complete genome sequences of two Kenyan G2P[4] strains, AK26 and D205, detected in 1982 and 1989, respectively, were analysed. Strain D205 exhibited a DS-1-like genotype constellation, whilst strain AK26 appeared to be an intergenogroup reassortant with a Wa-like NSP2 genotype on the DS-1-like genotype constellation. The VP2-4, VP6-7, NSP1, NSP3 and NSP5 genes of strain AK26 and the VP2, VP4, VP7 and NSP1–5 genes of strain D205 were closely related to those of the prototype or other human G2P[4] strains. In contrast, their remaining genes were distantly related, and, except for NSP2 of AK26, appeared to originate from or share a common origin with rotavirus genes of artiodactyl (ruminant and camelid) origin. These observations highlight the complex evolutionary dynamics of African G2P[4] rotaviruses.


2018 ◽  
Vol 34 (6) ◽  
pp. 532-543 ◽  
Author(s):  
Hae-Ryun Kwak ◽  
Hee Ju Lee ◽  
Eun-A Kim ◽  
Jang-Kyun Seo ◽  
Chang-Seok Kim ◽  
...  

2020 ◽  
Author(s):  
Jiaokun Li ◽  
Tianyuan Gu ◽  
Weimin Zeng ◽  
Runlan Yu ◽  
Yuandong Liu ◽  
...  

Abstract Background: Antimonite [Sb(III)]-oxidizing bacterium has great potential in the environmental bioremediation of Sb-polluted sites. Bacillus sp. S3 that was previously isolated from antimony-contaminated soil displayed high Sb(III) resistance and Sb(III) oxidation efficiency. However, the genomic information and evolutionary feature of Bacillus sp. S3 are very scarce. Results: Here, we identified a 5,579,638 bp chromosome with 40.30% GC content and a 241,339 bp plasmid with 36.74% GC content in the complete genome of Bacillus sp. S3. Genomic annotation showed that Bacillus sp. S3 contained a key aioB gene potentially encoding As(III)/Sb(III) oxidase, which was not shared with other Bacillus strains. Further, a series of genes associated with Sb(III) and other heavy metal(loid)s were also ascertained in Bacillus sp. S3, reflecting its adaptive advantage for growth in the harsh eco-environment. Based on the analysis of phylogenetic relationship and the average nucleotide identities (ANI), we found that Bacillus sp. S3 was a novel species within the Bacillus genus. The majority of mobile genetic elements (MGEs) mainly distributed on chromosomes within the Bacillus genus. Pan-genome analysis showed that the 45 genomes contained 554 core genes and many unique genes were dissected in analyzed genomes. Whole genomic alignment showed that Bacillus genus underwent frequently large-scale evolutionary events. In addition, the origin and evolution analysis of Sb(III)-resistance genes revealed that evolutionary relationships and horizontal gene transfer (HGT) events among the Bacillus genus. The assessment of functionality of heavy metal(loid)s resistance genes emphasized its indispensable roles in the harsh eco-environment of Bacillus genus. The real-time Quantitative PCR (RT-qPCR) results of Sb(III)-related genes indicated that the Sb(III) resistance was constantly increased under the Sb(III) stress. Conclusions: The results in this study shed light on the molecular mechanisms of Bacillus sp. S3 coping with Sb(III), extended our understanding on the evolutionary relationship between Bacillus sp. S3 and other closely related species, and further enriched the Sb(III) resistance genetic data sources.


2018 ◽  
Vol 6 (11) ◽  
Author(s):  
V. A. Toropov ◽  
T. Y. Vakhitov ◽  
O. N. Shalaeva ◽  
E. K. Roshchina ◽  
S. I. Sitkin

ABSTRACTLactobacillus helveticusD75 and D76 were isolated from the intestinal tract of a healthy child. Both strains possess symbiotic, probiotic, and antagonistic activities. We have sequenced and annotated the whole genomes ofL. helveticusD75 and D76 and have conducted a preliminary genome comparative analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dulanjani Wijayasekara ◽  
Akhtar Ali

AbstractNext-generation sequencing is a robust approach to sequence plant virus genomes in a very short amount of time compared to traditional sequencing methods. Maize dwarf mosaic virus (MDMV) is one of the most important plant viruses worldwide and a significant threat to maize production. In this study, we sequenced 19 MDMV isolates (10 from Johnsongrass and 9 from maize) collected in Oklahoma and Missouri during 2017–2019 using Illumina sequencing and determined the genetic diversity. Sequence reads were assembled and 19 nearly complete genome sequences of MDMV isolates were obtained. Phylogenetic analysis based on complete genomes nucleotide and amino acid sequences revealed two main clusters and a close evolutionary relationship among 19 MDMV isolates. Statistical analysis of individual genes for site-specific selection revealed that all genes are under negative selection. The fixation index (FST) analysis of the MDMV isolates revealed no gene flow between the two main phylogenetic clusters, which emphasizes the divergence of MDMV isolates from the USA. Among the USA MDMV isolates, the mean genetic distance (d) and nucleotide diversity ((π) were highest in the P1 gene coding region. This is the first detailed study on the evolutionary relationship of MDMV isolates based on the nearly complete genome analysis from maize and Johnsongrass.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenhao Wu ◽  
Lingling Lu ◽  
Wenjia Fan ◽  
Chun Chen ◽  
Dazhi Jin ◽  
...  

The rapidly increasing prevalence of Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing bacteria has become a serious challenge to public health. Currently, the blaKPC–2 gene is mainly disseminated through plasmids of different sizes and replicon types. However, the plasmids carrying the blaKPC–2 gene have not been fully characterized. In this study, we report the complete genome sequences of two novel blaKPC–2-harboring incompatibility group U (IncU) plasmids, pEC2341-KPC and pEC2547-KPC, from international high-risk clones of Escherichia coli isolated from Zhejiang, China. Two KPC-2-producing E. coli isolates (EC2341 and EC2547) were collected from clinical samples. Whole-genome sequencing (WGS) analysis indicated that EC2341 and EC2547 belonged to the ST410 and ST131 clones, respectively. S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blot and conjugation experiments confirmed the presence of the blaKPC–2 gene on the pEC2341-KPC plasmid and that this was a conjugative plasmid, while the blaKPC–2 gene on the pEC2547-KPC plasmid was a non-conjugative plasmid. In addition, plasmid analysis further revealed that the two blaKPC–2-harboring plasmids have a close evolutionary relationship. To the best of our knowledge, this is the first report of E. coli strains carrying the blaKPC–2 gene on IncU plasmids. The emergence of the IncU-type blaKPC–2-positive plasmid highlights further dissemination of blaKPC–2 in Enterobacteriaceae. Therefore, effective measures should be taken immediately to prevent the spread of these blaKPC–2–positive plasmids.


Sign in / Sign up

Export Citation Format

Share Document