scholarly journals Synthesis and Characterization of Allyl Terpene Maleate Monomer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yan Gu ◽  
Matthew Hummel ◽  
Kasiviswanathan Muthukumarappan ◽  
Zhendong Zhao ◽  
Zhengrong Gu

AbstractTerpenes and their derivatives are sustainable, renewable chemicals that can be used as a complementary hydrocarbon. The exceptions are fossil-based feedstocks and lignin-based feedstocks. A simple method has been found to prepare allyl terpene maleate monomer by substitution reaction at lower reaction temperatures. Using terpenes from turpentine, maleic anhydride and allyl chloride as reactants, the synthesized monomer, terpene-diallyl maleate adduct, was prepared by D-A addition, hydrolysis, and substitution reaction. The resultant monomer was characterized for the first time. The synthesized product will be a versatile monomer and a very important intermediate, having broad application prospects. The synthesized monomer will replace similar aromatic compounds in certain applications because of its low-toxicity and sustainability. The synthesized monomer with two terminal olefin structures has great free radical polymerization potential, according to its physical and chemical properties and exploratory experimentation.

1973 ◽  
Vol 51 (21) ◽  
pp. 3605-3619 ◽  
Author(s):  
C. Willis ◽  
R. A. Back

Preparation of di-imide by passing hydrazine vapor through a microwave discharge yields mixtures with NH3 containing typically about 15% N2H2, estimated from the gases evolved on decomposition. The behavior of the mixture (which melts at −65 °C) on warming from −196 to −30 °C suggests a strong interaction between the components. Measurements of magnetic susceptibility and e.p.r. experiments showed that N2H2 is not strongly paramagnetic, which with other observations points to a singlet rather than a triplet ground-state.Di-imide can be vaporized efficiently, together with NH3, by rapid warming, and the vapor is surprisingly long-lived, with a typical half-life of several minutes at room temperature. The near-u.v. (3200–4400 Å) absorption spectrum of the vapor was photographed; it shows well-defined but diffuse bands, with εmax = 6(± 3) at 3450 Å.Di-imide decomposes at room temperature in two ways:[Formula: see text][Formula: see text]Formation of NH3 was not observed but cannot be ruled out. The decomposition of the vapor is complicated by a sizeable and variable decomposition that occurs rapidly during the vaporization. The stoichiometry of this and the vapor-phase decomposition depends on total pressure and di-imide concentration. The kinetics of the decomposition of the vapor were studied from 22 to 200 °C by following the disappearance of N2H2 by absorption of light at 3450 Å, or the formation of N2H4 by absorption at 2400 Å, and by mass spectrometry. The kinetics are complex and can be either first- or second-order, or mixed, depending on surface conditions. The effect of olefin additives on the decomposition was studied, and is also complex.Mechanisms for the decomposition are discussed, including the possible role of trans-cis isomerization. The relatively long lifetime found for di-imide in the gas phase suggests that it may be an important intermediate in many reactions of hydronitrogen systems.


2017 ◽  
Vol 14 (4) ◽  
pp. 735-741 ◽  
Author(s):  
Baghdad Science Journal

A study of Zooplankton community has been carried out at four selected sites on Dukan Lake. Samples of water and zooplankton were collected monthly for the period from July 2015 to February 2016. Some physical and chemical properties of water were studied and the results showed that the air temperature were ranged from 0 to 36.16 °C, water temperature ranged from 2.83 to 34.66 °C, hydrogen ion concentration of studied sites were found to lie in alkaline side, it was ranged between 6.87 to 8.57, electrical conductivity ranged from 190.79 to 850.08 µs.cm­¹, turbidity ranged from 0.9-7.7 NTU, and dissolved oxygen from 3.3 to 6.8 mg.l-¹ while BOD5 were ranged from 0.53 to 34.66 mg.l-¹. Concerning to the zooplankton, 37 species were identified which belonged to Cladocera (48.38%), Copepod (43.28%), Rotifera (8.23%), Targigrada (0.08%) and Cnidaria (0.1%). The medusa of Craspedacusta sowerbii Lankester (1880) was recorded for the first time in Iraq. Regarding to zooplankton community, rotifer were ranged between 0 to 690.91 ind.m-3, Copepoda from 54.55 to 5927.27 ind.m-3 and Cladocera ranged from 18.18 to 6072.73 ind.m-3. According to Shanon-Weiner index, species diversity for zooplankton invertebrates was ranged from 0.325 to 1.091 bits/ind. Jaccard’s similarity index showed that the highest similarity was recorded between site (1) and site (4) with 40.74%.


Author(s):  
Guili Ge ◽  
Lin Li ◽  
Dan Wang ◽  
Mingjian Chen ◽  
Zhaoyang Zeng ◽  
...  

Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, easy surface functionalization, making them widely used in biological...


2020 ◽  
Vol 81 (6) ◽  
pp. 1273-1282 ◽  
Author(s):  
Hangdao Qin ◽  
Hao Cheng ◽  
Chenggui Long ◽  
Xiaogang Wu ◽  
Yanhong Chen ◽  
...  

Abstract N, S co-doped MnFe2O4@C magnetic nanoparticles were successfully synthesized by a simple method involving the preparation of MnFe2O4 nanoparticles and subsequent pyrolysis treatment. The physical and chemical properties of MnFe2O4, MnFe2O4@C and MnFe2O4@C–NS nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), N2 adsorption–desorption and the pH at the point of zero charge. Their performances in the adsorption of Hg(II) from water were investigated. The adsorption process followed pseudo-second-order kinetics and the experimental data of equilibrium isotherms fitted well with the Langmuir model. MnFe2O4@C–NS showed the highest adsorption capacity of 108.56 mg/g, increasing more than 1.7 times compared to MnFe2O4. The enhanced adsorption performance was attributed to the larger specific surface area as well as the complexation of N and S ligands on the surface. The thermodynamic parameters of ΔH°, ΔS° and ΔG° at 30 °C were −24.39 kJ/mol, −0.046 kJ/mol K and −10.45 kJ/mol, respectively, which indicated that the adsorption of Hg(II) on MnFe2O4@C–NS was exothermic and spontaneous in nature. Moreover, MnFe2O4@C–NS showed superior selectivity towards Hg(II) compared with other metal ions generally present in mercury-containing industrial wastewater.


2013 ◽  
Vol 394 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Radoslaw Szmyd ◽  
Anna Grazyna Goralczyk ◽  
Lukasz Skalniak ◽  
Agnieszka Cierniak ◽  
Barbara Lipert ◽  
...  

Abstract Silver nanoparticles (AgNPs) have many biological applications in biomedicine, biotechnology and other life sciences. Depending on the size, shape and the type of carrier, AgNPs demonstrate different physical and chemical properties. AgNPs have strong antimicrobial, antiviral and antifungal activity, thus they are used extensively in a range of medical settings, particularly in wound dressings but also in cosmetics. This study was undertaken to examine the potential toxic effects of 15 nm polyvinylpyrrolidone-coated AgNPs on primary normal human epidermal keratinocytes (NHEK). Cells were treated with different concentrations of AgNPs and then cell viability, metabolic activity and other biological and biochemical aspects of keratinocytes functioning were studied. We observed that AgNPs decrease keratinocyte viability, metabolism and also proliferatory and migratory potential of these cells. Moreover, longer exposure resulted in activation of caspase 3/7 and DNA damage. Our studies show for the first time, that AgNPs may present possible danger for primary keratinocytes, concerning activation of genotoxic and cytotoxic processes depending on the concentration.


1959 ◽  
Vol 32 (4) ◽  
pp. 1036-1038 ◽  
Author(s):  
B. A. Dolgoplosk ◽  
E. N. Kropacheva ◽  
K. V. Nelson

Abstract Ziegler catalysts have become of prime importance for synthesis of polymers with regular structure, particularly cis-polyisoprene. The disruption of the structure of the chain by the formation of trans units was, until now, connected only with the influence of the physical and chemical properties of the catalyst on the nature of the addition of the diene monomers during the polymerization process. In the present work it is shown that destruction of regularity of structure can be caused by isomerization of cis units in complete polymer chains into trans units under the influence of the compounds used for initiating the polymerization process. Attempts to isomerize natural rubber by means of ultraviolet light and iodine did not give the expected effect. Ferri established for the first time that under the influence of zinc chloride and titanium tetrachloride natural rubber undergoes changes accompanied by disappearence of crystallization on stretching as shown by x-ray structure analysis. On the basis of these results the authors presumed that under the influence of these agents isomerization of cis units to trans units occurs in the natural rubber chain. The isomerization of cis-1,4 units to trans units in polybutadiene by means of ultraviolet light in the presence of organic bromine or sulfur compounds was first accomplished and proved by Golub. The formation of trans units in natural rubber under similar conditions was not observed. The study of the isomerizing effect of TiCl4 and organo-aluminum compounds was conducted by us on solutions of milled natural rubber (NK) in benzene in sealed glass ampoules. The benzene used was dried and distilled over sodium. All work was conducted in an atmosphere of dry argon. Unsaturation and microstructure of the chain was determined on each sample. The study of microstructure of polyisoprenes was carried out by means of infrared spectra, the relative content of the different configurations of the polymer chain being determined by the absorption in the 800–1000 cm−1 region. The method previously developed by one of us was used for this purpose.


1978 ◽  
Vol 33 (4) ◽  
pp. 412-416 ◽  
Author(s):  
Reinhold Tacke ◽  
Roland Niedner

Abstract Organosilicon compounds 8, 9 and 10 with potential curare-like action and their precursors 5, 6 and 7 were synthesized for the first time. 5−10 were characterized by their physical and chemical properties, and their structures were confirmed by analyses, 1 H NMR and mass spectroscopy (only for 5−7). The pharmacological and toxicological data of 8, 9 and 10 are reported.


2017 ◽  
Vol 25 (1) ◽  
pp. 42-48
Author(s):  
I A. Sychev ◽  
D G. Kokina

A method of isolation of polysaccharide complex from the leaves of Burdock (Arctium lappa L.) is described in the article. For the first time the qualitative composition of this complex was determined, belonging to the group of heteroglycans. Some of physical and chemical properties of polysaccharide complex were studied. It is shown that polysaccharide complex increases catalase activity and peroxide resistance of the erythrocyte membranes of healthy donors. The study found that polysaccharide complex of Burdock improves physical performance of test animals.


2020 ◽  
Vol 54 (2 (252)) ◽  
pp. 168-176
Author(s):  
L.R. Hambaryan ◽  
L.G. Stepanyan ◽  
M.V. Mikaelyan ◽  
Q.G. Gyurjyan

Seasonal hydrochemical, hydrophysical, and phytoplankton studies were conducted in a littoral zone of Lake Sevan in 2019. It is known that in recent years widespread algal blooms were usually started from the littoral zone of Big Sevan, and then spread towards the pelagic zone of the lake. The bloom was mainly caused by species belonging to the genus Dolichospermum (previously Anabaena). Our study has revealed that the physical and chemical properties of water were changed as a result of algal bloom. Particularly, the transparency of water and concentration of dissolved oxygen decreased, while the concentrations of ammonium, nitrite and phosphate ions increased. For the first time, the presence of the toxins microcystin and anatoxin-a was recorded in the lake.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rashed S. Bakdash ◽  
Isam. H. Aljundi ◽  
Chanbasha Basheer ◽  
Ismail Abdulazeez

Abstract In this present work, we successfully prepared aminated silica (ASiO2) from rice husk ash (RHA) and functionalized with 3-aminopropyltriethoxysilane (APTES). Physical and chemical properties of the synthesized material were investigated by various techniques SEM–EDX, XPS, FTIR, TGA. The surface area of RHA was 223 m2/g, while for ASiO2 was 101 m2/g. Molecular level DFT calculations revealed that the functionalization of ASiO2 resulted in a significant decrease in the HOMO–LUMO energy gap, a reduction in hardness, and a consequent increase in charge transfer characteristics. The adsorption behavior at low pressure (1 atm.) of aminated silica on different gases CO2, CH4, H2, and N2 at temperatures 77, 273, 298 K was studied. The adsorption of hydrogen was reported for the first time on aminated silica with an excellent adsorption capacity of 1.2 mmol/g. The ASiO2 exhibited excellent performance in terms of gas separation in binary mixtures of CO2/CH4, CO2/N2 and CO2/H2 at 273, and 298 K, respectively. The catalyst further exhibits high stability during three cycles with less than 10% variation in the separation capacity.


Sign in / Sign up

Export Citation Format

Share Document