scholarly journals Fungal and bacterial diversity of Svalbard subglacial ice

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Perini ◽  
C. Gostinčar ◽  
N. Gunde-Cimerman

AbstractThe composition of fungal and bacterial communities in three polythermal glaciers and associated aquatic environments in Kongsfjorden, Svalbard was analysed using a combination of cultivation and amplicon sequencing. 109 fungal strains belonging to 30 mostly basidiomycetous species were isolated from glacial samples with counts up to 103 CFU/100 ml. Glaciozyma-related taxon and Phenoliferia psychrophenolica were the dominant species. Unexpectedly, amplicon sequencing uncovered sequences of Chytridiomycota in all samples and Rozellomycota in sea water, lake water, and tap water. Sequences of Malassezia restricta and of the extremely halotolerant Hortaea werneckii were also found in subglacial habitats for the first time. Overall, the fungal communities within a glacier and among glaciers were diverse and spatially heterogenous. Contrary to this, there was a large overlap between the bacterial communities of different glaciers, with Flavobacterium sp. being the most frequently isolated. In amplicon sequencing Actinobacteria and Proteobacteria sequences were the most abundant.

1958 ◽  
Vol 36 (3) ◽  
pp. 301-310 ◽  
Author(s):  
E. Gordon Young ◽  
W. M. Langille

Specimens of numerous marine species of the green, red, and brown algae from the Atlantic coast of Canada have been analyzed for total ash, Na, K, Ca, and Si, and the trace elements, As, Co, Cu, F, I, Mn, Mo, Ni, Pb, and Zn. Figures for fluorine in seaweeds are recorded for the first time. Thorough washing with tap water lowered the content of the ash, Na, K, and Si, but did not affect appreciably the concentrations of other elements.Accumulation from the sea water was apparent in greatly varying degrees in the following ascending order: F, Mo, Co, Cu, As, Ni, Mn, Zn, I. The ranges in concentration observed were Na 1.6–4.7, K 2.3–7.1, Ca 0.9–2.3, Si 0.5–2.0, as percentage of dry matter; I 20–2490, Zn 35–97, Mn 20–50, Cu 6–62, As 2–75, F 2–22, Pb 0.8, Ni 0.3–2, Co 0.1–0.7, Mo 0.2–1.4 as p.p.m.No seasonal variation was detectable in the concentration of trace elements in Chondrus crispus. Differences in concentration were observed between frond and stipe in two species of Laminaria.


2021 ◽  
Vol 232 (12) ◽  
Author(s):  
István Szabó ◽  
Jafar Al-Omari ◽  
Gábor Soma Szerdahelyi ◽  
Milán Farkas ◽  
Yazid Al-Omari ◽  
...  

AbstractDespite the great benefits of plastics in different aspects of life and due to the increase in plastic production and use, plastic wastes are becoming a major environmental concern. It is well known that inappropriate use and disposal lead to the accumulation of plastic litter in different aquatic environments. Microbial biofilm is able to develop on the surface of plastics (plastisphere) in aquatic environments over time. The aim of this study was to describe the bacterial communities associated with plastics in freshwater. Thus, in our first test, a total of six self-designed plastic colonizers were submerged under the surface of the water in Vácszentlászló lake, located in central Hungary, for a period of 3 months. Two plastic colonizers were cultivated monthly. Associated microbial communities were then analyzed as follows: (a) bacterial communities were studied by amplicon sequencing and (b) culturable bacteria were isolated from plastic surfaces and identified by 16S rRNA gene sequencing. Coinciding with these analyses of plastic colonizing communities, surface water samples from the lake were also taken, and in a second test, other materials (eg. wood, glass) associated bacterial communities were also investigated with the same methods. Amplicon sequencing showed notable differences between the plastic and other materials colonizing, and lake waterborne microbial community composition. Using the LB agar, no novel species were found; however, several known pathogenic species were identified. The self-designed plastic colonizer was successfully used during the winter over a 3-month period, suggesting that it could be an appropriate method of choice to study microplastic-associated microbes for longer periods and in variable environmental conditions.


Author(s):  
Carolin Friedle ◽  
Paul D’Alvise ◽  
Karsten Schweikert ◽  
Klaus Wallner ◽  
Martin Hasselmann

AbstractAnalysis of plant pollen can provide valuable insights into the existing spectrum of microorganisms in the environment. When harvesting bee-collected pollen as a dietary supplement for human consumption, timely preservation of the freshly collected pollen is fundamental for product quality. Environmental microorganisms contained in freshly collected pollen can lead to spoilage by degradation of pollen components. In this study, freshly collected bee pollen was sampled at different locations and stored under various storage conditions to examine the hypothesis that storage conditions may have an effect on the composition of microorganisms in pollen samples. The samples were analyzed using 16S and 18S amplicon sequencing and characterized by palynological analysis. Interestingly, the bacterial communities between pollen samples from different locations varied only slightly, whereas for fungal community compositions, this effect was substantially increased. Further, we noticed that fungal communities in pollen are particularly sensitive to storage conditions. The fungal genera proportion Cladosporium and Mycosphaerella decreased, while Zygosaccharomyces and Aspergillus increased during storage. Aspergillus and Zygosaccharomyces fractions increased during storage at 30 °C, which could negatively impact the pollen quality if it is used as a dietary supplement.


2021 ◽  
Vol 8 (1) ◽  
pp. 201805
Author(s):  
Man-Hong Ye ◽  
Shu-Hang Fan ◽  
Xiao-Yuan Li ◽  
Islam Mohd Tarequl ◽  
Chun-Xiang Yan ◽  
...  

American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus . The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Kui ◽  
Guisheng Xiang ◽  
Ya Wang ◽  
Zijun Wang ◽  
Guorong Li ◽  
...  

There is a special interaction between the environment, soil microorganisms, and tea plants, which constitute the ecosystem of tea plantations. Influenced by environmental factors and human management, the changes in soil microbial community affected the growth, quality, and yield of tea plants. However, little is known about the composition and structure of soil bacterial and fungal communities in 100-year-old tea plantations and the mechanisms by which they are affected. In this regard, we characterized the microbiome of tea plantation soils by considering the bacterial and fungal communities in 448 soil samples from 101 ancient tea plantations in eight counties of Lincang city, which is one of the tea domestication centers in the world. 16S and Internal Transcribed Spacer (ITS) rRNA high-throughput amplicon sequencing techniques were applied in this study. The results showed that the abundance, diversity, and composition of the bacterial and fungal communities have different sensitivity with varying pH, altitude, and latitude. pH and altitude affect soil microbial communities, and bacterial communities are more sensitive than fungi in terms of abundance and diversity to pH. The highest α-diversity of bacterial communities is shown in the pH 4.50–5.00 and 2,200-m group, and fungi peaked in the pH 5.00–5.50 and 900-m group. Because of environmental and geographical factors, all microbes are similarly changing, and further correlations showed that the composition and structure of bacterial communities are more sensitive than fungal communities, which were affected by latitude and altitude. In conclusion, the interference of anthropogenic activities plays a more important role in governing fungal community selection than environmental or geographical factors, whereas for the bacterial community, it is more selective to environment adaptation than to adaptation to human activities.


2020 ◽  
Author(s):  
Zhijie Zhang ◽  
Yanjie Liu ◽  
Caroline Brunel ◽  
Mark van Kleunen

AbstractSixty year ago, Elton proposed that diverse communities are more resistant to biological invasion. However, still little is known about which processes could drive this diversity-invasibility relationship. Here we examined whether plant-soil feedback on alien invaders is more negative when the soil originates from multiple native species. We trained soils with five individually grown native species, and used amplicon sequencing to analyze the resulting bacterial and fungal soil communities. We mixed the soils to create trained soils from one, two or four native species. We then grew four alien species separately on these differently trained soils. In the soil-conditioning phase, the five native species built species-specific bacterial and fungal communities in their rhizospheres. In the test phase, it did not matter whether the soil had been trained by one or two native species. However, the alien species achieved 11.7% less aboveground biomass when grown on soils trained by four native species than on soils trained by two native species. Our results showed for the first time, that plant-soil feedback could be a process that contributes to the negative relationship between diversity and invasibility.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


2020 ◽  
Vol 96 (6) ◽  
Author(s):  
A Katsoula ◽  
S Vasileiadis ◽  
M Sapountzi ◽  
Dimitrios G Karpouzas

ABSTRACT Pesticides interact with microorganisms in various ways with the outcome being negative or positive for the soil microbiota. Pesticides' effects on soil microorganisms have been studied extensively in soil but not in other pesticides-exposed microbial habitats like the phyllosphere. We tested the hypothesis that soil and phyllosphere support distinct microbial communities, but exhibit a similar response (accelerated biodegradation or toxicity) to repeated exposure to the fungicide iprodione. Pepper plants received four repeated foliage or soil applications of iprodione, which accelerated its degradation in soil (DT50_1st = 1.23 and DT50_4th = 0.48 days) and on plant leaves (DT50_1st &gt; 365 and DT50_4th = 5.95 days). The composition of the epiphytic and soil bacterial and fungal communities, determined by amplicon sequencing, was significantly altered by iprodione. The archaeal epiphytic and soil communities responded differently; the former showed no response to iprodione. Three iprodione-degrading Paenarthrobacter strains were isolated from soil and phyllosphere. They hydrolyzed iprodione to 3,5-dichloraniline via the formation of 3,5-dichlorophenyl-carboxiamide and 3,5-dichlorophenylurea-acetate, a pathway shared by other soil-derived arthrobacters implying a phylogenetic specialization in iprodione biotransformation. Our results suggest that iprodione-repeated application could affect soil and epiphytic microbial communities with implications for the homeostasis of the plant–soil system and agricultural production.


2008 ◽  
Vol 74 (6) ◽  
pp. 1805-1811 ◽  
Author(s):  
N. F. Azevedo ◽  
C. Almeida ◽  
I. Fernandes ◽  
L. Cerqueira ◽  
S. Dias ◽  
...  

ABSTRACT Part of the reason for rejecting aquatic environments as possible vectors for the transmission of Helicobacter pylori has been the preference of this microorganism to inhabit the human stomach and hence use a direct oral-oral route for transmission. On the other hand, most enteric bacterial pathogens are well known for being able to use water as an environmental reservoir. In this work, we have exposed 13 strains of seven different Helicobacter spp. (both gastric and enterohepatic) to water and tracked their survival by standard plating methods and membrane integrity assessment. The influence of different plating media and temperatures and the presence of light on recovery was also assessed. There was good correlation between cultivability and membrane integrity results (Pearson's correlation coefficient = 0.916), confirming that the culture method could reliably estimate differences in survival among different Helicobacter spp. The species that survived the longest in water was H. pylori (>96 h in the dark at 25°C), whereas H. felis appeared to be the most sensitive to water (<6 h). A hierarchical cluster analysis demonstrated that there was no relationship between the enterohepatic nature of Helicobacter spp. and an increased time of survival in water. This work assesses for the first time the survival of multiple Helicobacter spp., such has H. mustelae, H. muridarum, H. felis, H. canadensis, H. pullorum, and H. canis, in water under several conditions and concludes that the roles of water in transmission between hosts are likely to be similar for all these species, whether enterohepatic or not.


Sign in / Sign up

Export Citation Format

Share Document