scholarly journals p-Phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Parisa Zardari ◽  
Ali Rostami ◽  
Hemayat Shekaari

AbstractIn this study, p-Phenylenediaminium iodide (PDAI) is used to in-situ growth of 2D (PDA)2PbI4 perovskite layer between (FAPbI3)0.85(MAPbBr3)0.15 3D perovskite and CuSCN as a cheap hole transport layer. The results indicate that the incorporation of 5 mg mL−1 PDAI leads to enlarged grain sizes, compact grain boundaries, reduced trap density, efficient charge extraction, and enhanced stability of perovskite film. Passivation of perovskite film with the appropriate amount of PDAI helps in achieving efficient perovskite solar cell with a PCE as high as 16.10%, a JSC of 21.45 mA cm−2, a VOC of 1.09 V, and FF of 70.21%, with negligible hysteresis and excellent moisture stability which remains 99.01% of its initial PCE value after 5 h in high relative humidity of 90 ± 5% and shows unchanged PCE after 1440 h in low relative humidity of 15 ± 5%. Most strikingly, this ultra-thin 2D passivation layer by the use of PDA cations as a bulky spacer not only passivates the defects on the surface of perovskite film but also induces self-healing properties in PSCs which can be rapidly recovered after keeping away from water vapor exposure. This study introduces the cheap and extra stable perovskite solar cells with outstanding self-healing ability towards commercialization.

2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


Author(s):  
Xuefeng Xia ◽  
Dan Zhang ◽  
Xiaofeng Wang ◽  
Zonghu Xiao ◽  
Fan Li

In recent years, the nickel oxide (NiOx)-based planar p-i-n perovskite solar cell (PSC) has progressed rapidly. Nevertheless, poor electrical properties of NiOx, unoptimized band alignment between NiOx and perovskites, as...


2021 ◽  
pp. 45-51

The article is devoted to the creation of a model of a perovskite solar cell with the FTO/TiO2/CH3NH3PbI3-xClx/Cu2O/Au structure in the SCAPS-1D numerical simulation pro-gram. The effect of the thickness of the CH3NH3PbI3-xClxperovskite layer, as well as the thick-ness, concentration of acceptors, and hole mobility in the Cu2O layer on the photoelectric characteristicsof solar cells has been studied. It was found that the optimal thickness of the perovskite layer is 600–700 nm. An increase in the thickness of the Cu2O layer from 50 nm to 500 nm does not have a significant effect on the efficiency of the solar cell, while the optimal concentration of acceptors in the Cu2O layer is 1018–1019cm-3, and the holemobility should be more than 0.1 cm2/Vs. It is shown that a perovskite solar cell with a hole conductive layer Cu2O has better characteristics compared to the Spiro-OMeTAD layer and has the highest effi-ciency of 21.55%


The researchers now days are avid of solar cells despite the efficiency issues. As lead-based halide perovskite exhibit toxic nature alternatives for the anti- toxic perovskite solar cells(PSCs) are gaining much research. Bis(sulfanylidene )tungsten is a toxic free feasible emerging option with direct band gap of value 1.8 eV. Tungsten disulfide is other chemical name of Bis(sulfanylidene)tungsten. In this paper, perovskite solar cell (PSC) with Bis(sulfanylidene)tungsten (WS2 ) as electron transport layer and spiro-OMeTAD as hole transport layer is modelled and simulated using SCAPS software to analyze performance parameters. The device simulations results are compared for comprehensive defect study of WS2 as ETL. With integration of WS2 and spiro-OMeTAD in the perovskite design, the outcomes are proficient enough with 25.96% of PCE, 22.06 mA/cm2 Jsc, 1.280V Voc and 91.76% FF. Launching the batch setup for absorber layer thickness further resulted with competent PCE 27.78%. The outcomes signified that the toxic-free WS2 based PSC can be a prominent upcoming perspective in terms of environmentally pristine nature and capitulate comparative high efficiency


2021 ◽  
Vol 19 (51) ◽  
pp. 23-32
Author(s):  
Ahmed Ali Assi ◽  
Wasan R. Saleh ◽  
Ezzedin Mohajerani

The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission scanning electron microscope and current-voltage (J-V) characteristic curves, respectively. J-V curves revealed that the deposition of the Au layer between the electron transport layer (ETL) and Perovskite layer (PSK) reduced the power conversion efficiency (PCE) from 3% to 0.08% when one layer of C. TiO2 is deposited in the PSC and to 0.11% with two layers of C. TiO2. Power conversion efficiency, with CuI as the hole transport layer (HTL), showed an increase from 0.5% to 2.7% when Au layer was deposited between PSK and CuI layers. Also, Isc increased from 6.8 mA to 17.4 mA and Voc from 0.3 V to 0.5V. With depositing Au layer between P3HT and PSK layers, the results showed an increase in the efficiency from 1% to 2.6% and an increase in Isc from 10.7 mA to 30.5 mA, while Voc decreased from 0.75 V to 0.5V


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2191
Author(s):  
Xiaolan Wang ◽  
Xiaoping Zou ◽  
Jialin Zhu ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

It is crucial to find a good material as a hole transport layer (HTL) to improve the performance of perovskite solar cells (PSCs), devices with an inverted structure. Polyethylene dioxythiophene-poly (styrene sulfonate) (PEDOT:PSS) and inorganic nickel oxide (NiOx) have become hotspots in the study of hole transport materials in PSCs on account of their excellent properties. In our research, NiOx and PEDOT: PSS, two kinds of hole transport materials, were prepared and compared to study the impact of the bottom layer on the light absorption and morphology of perovskite layer. By the way, some experimental parameters are simulated by wx Analysis of Microelectronic and Photonic Structures (wxAMPS). In addition, thin interfacial layers with deep capture levels and high capture cross sections were inserted to simulate the degradation of the interface between light absorption layer and PEDOT:PSS. This work realizes the combination of experiment and simulation. Exploring the mechanism of the influence of functional layer parameters plays a vital part in the performance of devices by establishing the system design. It can be found that the perovskite film growing on NiOx has a stronger light absorption capacity, which makes the best open-circuit voltage of 0.98 V, short-circuit current density of 24.55 mA/cm2, and power conversion efficiency of 20.01%.


2015 ◽  
Vol 3 (38) ◽  
pp. 19294-19298 ◽  
Author(s):  
Xichang Bao ◽  
Qianqian Zhu ◽  
Meng Qiu ◽  
Ailing Yang ◽  
Yujin Wang ◽  
...  

High-quality CH3NH3PbI3 perovskite films were directly prepared on simple treated ITO glass in air under a relative humidity of lower than 30%.


2021 ◽  
Author(s):  
Atul kumar

Abstract Fill factor (FF) deficit and stability is a primary concern with the perovskite solar cell. Resistance values and band alignment at junction interface in perovskite are causing low fill factor. Moisture sensitivity of methylammonium lead halide perovskite is causing a stability issue. We tried to solve these issues by using inorganic hole transport layer (HTL). FF is sensitive to the band offset values. We study the band alignment/band offset effect at the Perovskite /HTL junction. Inorganic material replacing Spiro-MeOTAD can enhance the stability of the device by providing an insulation from ambient. Our simulation study shows that the earth abundant p-type chalcogenide materials of SnS as HTL in perovskite is comparable to Spiro-MeOTAD efficiency.


2018 ◽  
Vol 2 (10) ◽  
pp. 2154-2159 ◽  
Author(s):  
Xing Guo ◽  
Bingjuan Zhang ◽  
Zhenhua Lin ◽  
Jie Su ◽  
Zhou Yang ◽  
...  

The solvent vapor annealing effect on conjugated polymer thin films as well as the corresponding perovskite solar cell devices is investigated.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


Sign in / Sign up

Export Citation Format

Share Document